4 resultados para percutaneous transthoracic lung biopsy

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a novel constitutive model of lung parenchyma, which can be used for continuum mechanics based predictive simulations. To develop this model, we experimentally determined the nonlinear material behavior of rat lung parenchyma. This was achieved via uni-axial tension tests on living precision-cut rat lung slices. The resulting force-displacement curves were then used as inputs for an inverse analysis. The Levenberg-Marquardt algorithm was utilized to optimize the material parameters of combinations and recombinations of established strain-energy density functions (SEFs). Comparing the best-fits of the tested SEFs we found Wpar = 4.1 kPa(I1-3)2 + 20.7 kPa(I1 - 3)3 + 4.1 kPa(-2 ln J + J2 - 1) to be the optimal constitutive model. This SEF consists of three summands: the first can be interpreted as the contribution of the elastin fibers and the ground substance, the second as the contribution of the collagen fibers while the third controls the volumetric change. The presented approach will help to model the behavior of the pulmonary parenchyma and to quantify the strains and stresses during ventilation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A TiNi/diamond-like-carbon (DLC) microcage for biological application has been designed, fabricated and characterized. A compressively stressed DLC film with TiNi pattern on top lifts the fingers upwards once they are released from the substrate, and the microcage can be closed through shape memory effect of top TiNi film with temperature below 80°C. Further heating above 100°C, the gradual opening of the microcage can be obtained due to thermal bimorph effect. The biocompatibility of both the TiNi and DLC films has been proved using a cell-culture method.