27 resultados para parallel computation model
em Cambridge University Engineering Department Publications Database
Resumo:
Model Predictive Control (MPC) is increasingly being proposed for application to miniaturized devices, fast and/or embedded systems. A major obstacle to this is its computation time requirement. Continuing our previous studies of implementing constrained MPC on Field Programmable Gate Arrays (FPGA), this paper begins to exploit the possibilities of parallel computation, with the aim of speeding up the MPC implementation. Simulation studies on a realistic example show that it is possible to implement constrained MPC on an FPGA chip with a 25MHz clock and achieve MPC implementation rates comparable to those achievable on a Pentium 3.0 GHz PC. Copyright © 2007 International Federation of Automatic Control All Rights Reserved.
Resumo:
Calculations are presented predicting the onset of flow instability for a multistage low speed axial compressor operating in circumferentially distorted inlet flow. The most important feature of the model used is that it attempts to properly account for the fluid dynamic interaction between the spoiled and unspoiled sectors of the compressor. The calculations show that there is an approximate stability criterion, the annulus averaged slope of the compressor pressure rise characteristic equal to zero, that is valid whenever the dynamics of the compressor distorted flowfield can be considered independent of the compressor environment. This approximate criterion is used to investigate the relationship between the present model and the 'parallel compressor' model. Further calculations are performed to investigate cases of interest when the dynamics of the compressor flowfield are coupled to the environment. Resonant cases and cases when the distortion is unsteady are studied.
Resumo:
We present a video-based system which interactively captures the geometry of a 3D object in the form of a point cloud, then recognizes and registers known objects in this point cloud in a matter of seconds (fig. 1). In order to achieve interactive speed, we exploit both efficient inference algorithms and parallel computation, often on a GPU. The system can be broken down into two distinct phases: geometry capture, and object inference. We now discuss these in further detail. © 2011 IEEE.
Resumo:
The solution time of the online optimization problems inherent to Model Predictive Control (MPC) can become a critical limitation when working in embedded systems. One proposed approach to reduce the solution time is to split the optimization problem into a number of reduced order problems, solve such reduced order problems in parallel and selecting the solution which minimises a global cost function. This approach is known as Parallel MPC. The potential capabilities of disturbance rejection are introduced using a simulation example. The algorithm is implemented in a linearised model of a Boeing 747-200 under nominal flight conditions and with an induced wind disturbance. Under significant output disturbances Parallel MPC provides a significant improvement in performance when compared to Multiplexed MPC (MMPC) and Linear Quadratic Synchronous MPC (SMPC). © 2013 IEEE.
Resumo:
Approximate Bayesian computation (ABC) has become a popular technique to facilitate Bayesian inference from complex models. In this article we present an ABC approximation designed to perform biased filtering for a Hidden Markov Model when the likelihood function is intractable. We use a sequential Monte Carlo (SMC) algorithm to both fit and sample from our ABC approximation of the target probability density. This approach is shown to, empirically, be more accurate w.r.t.~the original filter than competing methods. The theoretical bias of our method is investigated; it is shown that the bias goes to zero at the expense of increased computational effort. Our approach is illustrated on a constrained sequential lasso for portfolio allocation to 15 constituents of the FTSE 100 share index.
Resumo:
This paper extends the recently developed multiplexed model predictive control (MMPC) concept to ensure satisfaction of hard constraints despite the action of persistent, unknown but bounded disturbances. MMPC uses asynchronous control moves on each input channel instead of synchronised moves on all channels. It offers reduced computation, by dividing the online optimisation into a smaller problem for each channel, and potential performance improvements, as the response to a disturbance is quicker, albeit via only one channel. Robustness to disturbances is introduced using the constraint tightening approach, tailored to suit the asynchronous updates of MMPC and the resulting time-varying optimisations. Numerical results are presented, involving a simple mechanical example and an aircraft control example, showing the potential computational and performance benefits of the new robust MMPC.