4 resultados para pacs: data security

em Cambridge University Engineering Department Publications Database


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Pharma(ceuticals) industry is at a cross-roads. There are growing concerns that illegitimate products are penetrating the supply chain. There are proposals in many countries to apply RFID and other traceability technologies to solve this problem. However there are several trade-offs and one of the most crucial is between data visibility and confidentiality. In this paper, we use the TrakChain assessment framework tools to study the US Pharma supply chain and to compare candidate solutions to achieve traceability data security: Point-of-Dispense Authentication, Network-based electronic Pedigree, and Document-based electronic Pedigree. We also propose extensions to a supply chain authorization language that is able to capture expressive data sharing conditions considered necessary by the industry's trading partners. © 2013 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Radio Frequency Identification (RFID) technology allows automatic data capture from tagged objects moving in a supply chain. This data can be very useful if it is used to answer traceability queries, however it is distributed across many different repositories, owned by different companies. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is growing interest in Discovery Services for locating RFID and supply chain data between companies globally, to obtain product lifecycle information for individual objects. Discovery Services are heralded as a means to find serial-level data from previously unknown parties, however more realistically they provide a means to reduce the communications load on the information services, the network and the requesting client application. Attempts to design a standardised Discovery Service will not succeed unless security is considered in every aspect of the design. In this paper we clearly show that security cannot be bolted-on in the form of access control, although this is also required. The basic communication model of the Discovery Service critically affects who shares what data with whom, and what level of trust is required between the interacting parties. © 2009 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum key distribution (QKD) uniquely allows distribution of cryptographic keys with security verified by quantum mechanical limits. Both protocol execution and subsequent applications require the assistance of classical data communication channels. While using separate fibers is one option, it is economically more viable if data and quantum signals are simultaneously transmitted through a single fiber. However, noise-photon contamination arising from the intense data signal has severely restricted both the QKD distances and secure key rates. Here, we exploit a novel temporal-filtering effect for noise-photon rejection. This allows high-bit-rate QKD over fibers up to 90 km in length and populated with error-free bidirectional Gb/s data communications. With high-bit rate and range sufficient for important information infrastructures, such as smart cities and 10 Gbit Ethernet, QKD is a significant step closer towards wide-scale deployment in fiber networks.