2 resultados para overlay denture
em Cambridge University Engineering Department Publications Database
Resumo:
An existing driver-vehicle model with neuromuscular dynamics is improved in the areas of cognitive delay, intrinsic muscle dynamics and alpha-gamma co-activation. The model is used to investigate the influence of steering torque feedback and neuromuscular dynamics on the vehicle response to lateral force disturbances. When steering torque feedback is present, it is found that the longitudinal position of the lateral disturbance has a significant influence on whether the drivers reflex response reinforces or attenuates the effect of the disturbance. The response to angle and torque overlay inputs to the steering system is also investigated. The presence of the steering torque feedback reduced the disturbing effect of torque overlay and angle overlay inputs. Reflex action reduced the disturbing effect of a torque overlay input, but increased the disturbing effect of an angle overlay input. Experiments on a driving simulator showed that measured handwheel angle response to an angle overlay input was consistent with the response predicted by the model with reflex action. However, there was significant intra-and inter-subject variability. The results highlight the significance of a drivers neuromuscular dynamics in determining the vehicle response to disturbances. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
We introduce a new algorithm to automatically identify the time and pixel location of foot contact events in high speed video of sprinters. We use this information to autonomously synchronise and overlay multiple recorded performances to provide feedback to athletes and coaches during their training sessions. The algorithm exploits the variation in speed of different parts of the body during sprinting. We use an array of foreground accumulators to identify short-term static pixels and a temporal analysis of the associated static regions to identify foot contacts. We evaluated the technique using 13 videos of three sprinters. It successfully identifed 55 of the 56 contacts, with a mean localisation error of 1.39±1.05 pixels. Some videos were also seen to produce additional, spurious contacts. We present heuristics to help identify the true contacts. © 2011 Springer-Verlag Berlin Heidelberg.