9 resultados para organo-mineral fertilizers
em Cambridge University Engineering Department Publications Database
Resumo:
Two series of ferroelectric liquid crystalline organo-siloxanes containing a laterally attached halogen on the phenyl ring have been synthesised and characterised to determine the impact of the siloxane group and the halogen on the mesomorphism and electro-optic switching properties. Both monomesogenic and bimesogenic compounds have been studied. The monomesogenic derivatives were found to be ferroelectric with high tilt and Ps. The tilt angle of 45° and the Ps of 95nC/cm2 are almost temperature independent. The bimesogenic bromo substituted derivatives showed mainly ferroelectric phases about 60°C wide. Maximum values for the spontaneous polarisation and the tilt angle were only slightly influenced by the length of the siloxane spacer. Altering the halogen to a fluorine shifted the liquid cystalline phase slightly to higher temperatures whilst maintaining the mesophase range of 60°C.
Resumo:
Granular reactive materials have higher permeability and are therefore desirable for in situ groundwater pollution control. Three granular bentonites were prepared: an Al-pillared bentonite (PBg), an organo-bentonite (OBg) using a quaternary ammonium cation (QAC), and an inorgano-organo-bentonite (IOBg), using both the pillaring agent and the QAC. Powdered IOB (IOBp) was also prepared to test the effect of particle size. The modified bentonites were characterised with X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA) and uniaxial compression tests. The d-spacing increased only with QAC intercalation. The Young's modulus of IOBg was twice as high as OBg. Batch adsorption tests were performed with aqueous multimetal solutions of Pb2+, Cu2+, Cd2+, Zn2+ and Ni2+ ions, with liquid dodecane and with aqueous dodecane solutions. Metal adsorption fit the Langmuir isotherm. Adsorption occurred within 30min for PBg, while the granular organo-bentonite needed at least 12h to reach equilibrium. IOBp had the maximum adsorption capacity at higher metal concentration and lower adsorbent content (Cu2+: 2.2, Ni2+: 1.7, Zn2+: 1.4, Cd2+: 0.9 and Pb2+: 0.7 all in mmolg-1). The dual pillaring of the QAC and Al hydroxide increased the adsorption. The adsorption of liquid dodecane was in the order IOBg>OBg>PBg (3.2>2.7>1.7mmolg-1). Therefore IOBg has potential for the removal of toxic compounds found in soil, groundwater, storm water and wastewater. © 2012 Elsevier B.V.
Resumo:
Biomineralized composite materials found in nature have a compromise of good mechanical properties and relatively small embodied energies in the process of their formation. The Alternate Soaking Process (ASP) is a laboratory technique that has only recently been applied to replicating composite biomineralization. The nexus of the ASP - heterogeneous nucleation - makes it ideal for replicating biominerals where the mineral is templated onto an organic substrate, such as occurs in avian eggshell. Here we demonstrate the deposition of a calcium carbonate gelatin composite on either glass cover slips or demineralized eggshell membranes using an automated ASP. SEM images and FTIR spectra of the resulting mineral show that by altering the amount of gelatin in the growth solutions the final organic component can be controlled accurately in the range of 1-10%, similar to that of natural eggshell. This study shows for the first time the co-precipitation of a CaCO3 - gelatin composite by an ASP and that the organic fraction of this mineral can be tuned to mimic that of natural biomineralized composites. © 2012 Materials Research Society.