293 resultados para optoelectronics devices
em Cambridge University Engineering Department Publications Database
Resumo:
We report a versatile and cost-effective way of controlling the unsaturated loss, modulation depth and saturation fluence of graphene-based saturable absorbers (GSAs), by changing the thickness of a spacer between SLG and a high-reflection mirror. This allows us to modulate the electric field intensity enhancement at the GSA from 0 up to 400%, due to the interference of incident and reflected light at the mirror. The unsaturated loss of the SLG-mirror-assembly can be reduced to$\sim$0. We use this to mode-lock a VECSEL from 935 to 981nm. This approach can be applied to integrate SLG into various optical components, such as output coupler mirrors, dispersive mirrors, dielectric coatings on gain materials. Conversely, it can also be used to increase absorption (up to 10%) in various graphene based photonics and optoelectronics devices, such as photodetectors.
Resumo:
GaAs and InP based nanowires were grown epitaxially on GaAs or InP (111)B substrates by MOCVD via VLS mechanism. In this paper, I will give an overview of nanowire research activities in our group. © 2009 IEEE.
Resumo:
We investigate how growth parameters may be chosen to obtain high quality GaAs nanowires suitable for optoelectronic device applications. Growth temperature and precursor flows have a significant effect on the morphology, crystallographic quality, intrinsic doping and optical properties of the resulting nanowires. Significantly, we find that low growth temperature and high arsine flow rate improve nanowire optical properties, reduce carbon impurity incorporation and drastically reduce planar crystallographic defects. Additionally, cladding the GaAs nanowire cores in an AlGaAs shell enhances emission efficiency. These high quality nanowires should create new opportunities for optoelectronic devices. © 2008 IEEE.
Resumo:
The optical and structural properties of binary and ternary III-V nanowires including GaAs, InP, In(Ga)As, Al(Ga)As, and GaAs(Sb) nanowires by metal-organic chemical vapour deposition are investigated, Au colloidal nanoparticles are employed to catalyze nanowire growth. Zinc blende or wurtzite crystal structures with some stacking faults are observed for these nanowires by high resolution transmission electron microscope. In addition, the properties of heterostructure nanowires including GaAs-AlGaAs core-shell nanowires, GaAs-InAs nanowires, and GaAs-GaSb nanowires are reported. Single nanowire luminescence properties from optically bright InP nanowires are reported. Interesting phenomena such as two-temperature procedure, nanowire height enhancement of isolated ternary InGaAs nanowires, kinking effect of InAs-GaAs heterostructure nanowires, and unusual growth property of GaAs-GaSb heterostructure nanowires are investigated. These nanowires will play an essential role in future optoelectronic devices.
Resumo:
The use of III-nitride-based light-emitting diodes (LEDs) is now widespread in applications such as indicator lamps, display panels, backlighting for liquid-crystal display TVs and computer screens, traffic lights, etc. To meet the huge market demand and lower the manufacturing cost, the LED industry is moving fast from 2 inch to 4 inch and recently to 6 inch wafer sizes. Although Al2O3 (sapphire) and SiC remain the dominant substrate materials for the epitaxy of nitride LEDs, the use of large Si substrates attracts great interest because Si wafers are readily available in large diameters at low cost. In addition, such wafers are compatible with existing processing lines for 6 inch and larger wafers commonly used in the electronics industry. During the last decade, much exciting progress has been achieved in improving the performance of GaN-on-Si devices. In this contribution, the status and prospects of III-nitride optoelectronics grown on Si substrates are reviewed. The issues involved in the growth of GaN-based LED structures on Si and possible solutions are outlined, together with a brief introduction to some novel in situ and ex situ monitoring/characterization tools, which are especially useful for the growth of GaN-on-Si structures.
Resumo:
Highly transparent zinc oxide (ZnO) nanowire networks have been used as the active material in thin film transistors (TFTs) and complementary inverter devices. A systematic study on a range of networks of variable density and TFT channel length was performed. ZnO nanowire networks provide a less lithographically intense alternative to individual nanowire devices, are always semiconducting, and yield significantly higher mobilites than those achieved from currently used amorphous Si and organic TFTs. These results suggest that ZnO nanowire networks could be ideal for inexpensive large area electronics. © 2009 American Institute of Physics.