28 resultados para open space, landscape artictecture, sustainability, landscape design
em Cambridge University Engineering Department Publications Database
Resumo:
A multi-objective design optimisation study has been carried out with the objectives to improve the overall efficiency of the device and to reduce the fuel consumption for the proposed micro-scale combustor design configuration. In a previous study we identified the topology of the combustion chamber that produced improved behaviour of the device in terms of the above design criteria. We now extend our design approach, and we propose a new configuration by the addition of a micro-cooling channel that will improve the thermal behaviour of the design as previously suggested in literature. Our initial numerical results revealed an improvement of 2.6% in the combustion efficiency when we applied the micro-cooling channel to an optimum design configuration we identified from our earlier multi-objective optimisation study, and under the same operating conditions. The computational modelling of the combustion process is implemented in the commercial computational fluid dynamics package ANSYS-CFX using Finite Rate Chemistry and a single step hydrogen-air reaction. With this model we try to balance good accuracy of the combustion solution and at the same time practicality within the context of an optimisation process. The whole design system comprises also the ANSYS-ICEM CFD package for the automatic geometry and mesh generation and the Multi-Objective Tabu Search algorithm for the design space exploration. We model the design problem with 5 geometrical parameters and 3 operational parameters subject to 5 design constraints that secure practicality and feasibility of the new optimum design configurations. The final results demonstrate the reliability and efficiency of the developed computational design system and most importantly we assess the practicality and manufacturability of the revealed optimum design configurations of micro-combustor devices. Copyright © 2013 by ASME.
Resumo:
Optimization on manifolds is a rapidly developing branch of nonlinear optimization. Its focus is on problems where the smooth geometry of the search space can be leveraged to design effcient numerical algorithms. In particular, optimization on manifolds is well-suited to deal with rank and orthogonality constraints. Such structured constraints appear pervasively in machine learning applications, including low-rank matrix completion, sensor network localization, camera network registration, independent component analysis, metric learning, dimensionality reduction and so on. The Manopt toolbox, available at www.manopt.org, is a user-friendly, documented piece of software dedicated to simplify experimenting with state of the art Riemannian optimization algorithms. By dealing internally with most of the differential geometry, the package aims particularly at lowering the entrance barrier. © 2014 Nicolas Boumal.
Resumo:
Design optimisation of compressor systems is a computationally expensive problem due to the large number of variables, complicated design space and expense of the analysis tools. One approach to reduce the expense of the process and make it achievable in industrial timescales is to employ multi-fidelity techniques, which utilise more rapid tools in conjunction with the highest fidelity analyses. The complexity of the compressor design landscape is such that the starting point for these optimisations can influence the achievable results; these starting points are often existing (optimised) compressor designs, which form a limited set in terms of both quantity and diversity of the design. To facilitate the multi-fidelity optimisation procedure, a compressor synthesis code was developed which allowed the performance attributes (e.g. stage loadings, inlet conditions) to be stipulated, enabling the generation of a variety of compressors covering a range of both design topology and quality to act as seeding geometries for the optimisation procedures. Analysis of the performance of the multi-fidelity optimisation system when restricting its exploration space to topologically different areas of the design space indicated little advantage over allowing the system to search the design space itself. However, comparing results from optimisations started from seed designs with different aerodynamic qualites indicated an improved performance could be achieved by starting an optimisation from a higher quality point, and thus that the choice of starting point did affect the final outcome of the optimisations. Both investigations indicated that the performance gains through the optimisation were largely defined by the early exploration of the design space where the multi-fidelity speedup could be exploited, thus extending this region is likely to have the greatest effect on performance of the optimisation system. © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
Design optimisation of compressor systems is a computationally expensive problem due to the large number of variables, complicated design space and expense of the analysis tools. One approach to reduce the expense of the process and make it achievable in industrial timescales is to employ multi-fidelity techniques, which utilise more rapid tools in conjunction with the highest fidelity analyses. The complexity of the compressor design landscape is such that the starting point for these optimisations can influence the achievable results; these starting points are often existing (optimised) compressor designs, which form a limited set in terms of both quantity and diversity of the design. To facilitate the multi-fidelity optimisation procedure, a compressor synthesis code was developed which allowed the performance attributes (e.g. stage loadings, inlet conditions) to be stipulated, enabling the generation of a variety of compressors covering a range of both design topology and quality to act as seeding geometries for the optimisation procedures. Analysis of the performance of the multi-fidelity optimisation system when restricting its exploration space to topologically different areas of the design space indicated little advantage over allowing the system to search the design space itself. However, comparing results from optimisations started from seed designs with different aerodynamic qualites indicated an improved performance could be achieved by starting an optimisation from a higher quality point, and thus that the choice of starting point did affect the final outcome of the optimisations. Both investigations indicated that the performance gains through the optimisation were largely defined by the early exploration of the design space where the multi-fidelity speedup could be exploited, thus extending this region is likely to have the greatest effect on performance of the optimisation system. © 2012 AIAA.