84 resultados para open highlands

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly porous ultralightweight cellular metal foams with open cells have attractive mechanical, thermal, acoustic and other properties and are currently being exploited for high-temperature applications (e.g. acoustic liners for combustion chambers). In such circumstances, thermal radiation in the metal foam becomes a significant mechanism of heat transfer. This paper presents results from experimental measurements on radiative transfer in Fe-Cr-Al-Y (a steel-based high-temperature alloy) foams having high porosity (95 per cent) and different cell sizes, manufactured at low cost from the sintering route. The spectral transmittance and reflectance are measured at different infrared wavelengths ranging from 2.5 to 50 μm, which are subsequently used to determine the extinction coefficient and foam emissivity. The results show that the spectral quantities are strongly dependent on the wavelength, particularly in the short-wavelength regime (less than 25 μm). While the extinction coefficient decreases with increasing cell size, the effect of cell size on foam reflectance is not significant. When the temperature is increased, the total extinction coefficient increases but the total reflectance decreases. The effective radiative conductivity of the metal foam is obtained by using the guarded hot-plate apparatus. With the porosity fixed, the effective radiative conductivity increases with increasing cell size and increasing temperature. © IMechE 2004.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a combined experimental and numerical study on natural convection in open-celled metal foams. The effective thermal conductivities of steel alloy (FeCrAlY) samples with different relative densities and cell sizes are measured with the guarded-hot-plate method. To examine the natural convection effect, the measurements are conducted under both vacuum and ambient conditions for a range of temperatures. The experimental results show that natural convection is very significant, accounting for up to 50% of the effective foam conductivity obtained at ambient pressure. This has been attributed to the high porosity (ε > 0.9) and inter-connected open cells of the metal foams studied. Morphological parameters characterizing open-celled FeCrAlY foams are subsequently identified and their cross-relationships are built. The non-equilibrium two-equation energy transfer model is employed, and selected calculations show that the non-equilibrium effect between the solid foam skeleton and air is significant. The study indicates that the combined parameter, i.e., the porous medium Rayleigh number, is no longer appropriate to correlate natural convection by itself when the Darcy number is sufficiently large as in the case of natural convection in open-celled metal foams. Good agreement between model predictions and experimental measurements is obtained. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents results from experimental measurements on radiative transfer in FeCrAlY (a steel based high temperature alloy) foams having high porosity (95%) and different cell sizes, manufactured at low cost from the sintering route. The spectral transmittance and reflectance are measured at different infrared wavelengths ranging from 2.5 to 50 μm, which are subsequently used to determine the extinction coefficient and foam emissivity. The results show that the spectral quantities are strongly dependent on the wavelength, particularly in the short wavelength regime (<25 μm). Whilst the extinction coefficient decreases with increasing cell size, the effect of cell size on foam reflectance is not significant. When the temperature is increased, the total extinction coefficient increases but the total reflectance decreases. An analytical model based on geometric optics laws, diffraction theory and metal foam morphology is developed to predict the radiative transfer, with cell size (or cell ligament diameter) and porosity identified as the two key parameters that dictate the foam radiative properties. Close agreement between the predicted effective foam conductivity due to radiation alone and that measured is observed. At fixed porosity, the radiative conductivity of the metal foam increases with increasing cell size and temperature. © 2004 Elsevier Ltd.All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effective thermal conductivity of steel alloy FeCrAlY (Fe-20 wt.% Cr-5 wt.% Al-2 wt.% Y-20 wt.%) foams with a range of pore sizes and porosities was measured between 300 and 800 K, under both vacuum and atmospheric conditions. The results show that the effective thermal conductivity increases rapidly as temperature is increased, particularly in the higher temperature range (500-800 K) where the transport of heat is dominated by thermal radiation. The effective conductivity at temperature 800 K can be three times higher than that at room temperature (300 K). Results obtained under vacuum conditions reveal that the effective conductivity increases with increasing pore size or decreasing porosity. The contribution of natural convection to heat conduction was found to be significant, with the effective thermal conductivity at ambient pressure twice the value of vacuum condition. The results also show that natural convection in metal foams is strongly dependent upon porosity. © 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: