83 resultados para objectivity without objects
em Cambridge University Engineering Department Publications Database
Resumo:
To explore the neural mechanisms related to representation of the manipulation dynamics of objects, we performed whole-brain fMRI while subjects balanced an object in stable and highly unstable states and while they balanced a rigid object and a flexible object in the same unstable state, in all cases without vision. In this way, we varied the extent to which an internal model of the manipulation dynamics was required in the moment-to-moment control of the object's orientation. We hypothesized that activity in primary motor cortex would reflect the amount of muscle activation under each condition. In contrast, we hypothesized that cerebellar activity would be more strongly related to the stability and complexity of the manipulation dynamics because the cerebellum has been implicated in internal model-based control. As hypothesized, the dynamics-related activation of the cerebellum was quite different from that of the primary motor cortex. Changes in cerebellar activity were much greater than would have been predicted from differences in muscle activation when the stability and complexity of the manipulation dynamics were contrasted. On the other hand, the activity of the primary motor cortex more closely resembled the mean motor output necessary to execute the task. We also discovered a small region near the anterior edge of the ipsilateral (right) inferior parietal lobule where activity was modulated with the complexity of the manipulation dynamics. We suggest that this is related to imagining the location and motion of an object with complex manipulation dynamics.
Resumo:
Standard algorithms in tracking and other state-space models assume identical and synchronous sampling rates for the state and measurement processes. However, real trajectories of objects are typically characterized by prolonged smooth sections, with sharp, but infrequent, changes. Thus, a more parsimonious representation of a target trajectory may be obtained by direct modeling of maneuver times in the state process, independently from the observation times. This is achieved by assuming the state arrival times to follow a random process, typically specified as Markovian, so that state points may be allocated along the trajectory according to the degree of variation observed. The resulting variable dimension state inference problem is solved by developing an efficient variable rate particle filtering algorithm to recursively update the posterior distribution of the state sequence as new data becomes available. The methodology is quite general and can be applied across many models where dynamic model uncertainty occurs on-line. Specific models are proposed for the dynamics of a moving object under internal forcing, expressed in terms of the intrinsic dynamics of the object. The performance of the algorithms with these dynamical models is demonstrated on several challenging maneuvering target tracking problems in clutter. © 2006 IEEE.
Resumo:
A simple way to deposit single-wall carbon nanotubes by CVD without the co-deposition of unwanted a-C was demonstrated. It was found that the catalytic deposition of SWCNTs occurs at a substantial rate compared to the self-pyrolysis of the hydrocarbon gas used.
Resumo:
Bonded networks of metal fibres are highly porous, permeable materials, which often exhibit relatively high strength. Material of this type has been produced, using melt-extracted ferritic stainless steel fibres, and characterised in terms of fibre volume fraction, fibre segment (joint-to-joint) length and fibre orientation distribution. Young's moduli and yield stresses have been measured. The behaviour when subjected to a magnetic field has also been investigated. This causes macroscopic straining, as the individual fibres become magnetised and tend to align with the applied field. The modeling approach of Markaki and Clyne, recently developed for prediction of the mechanical and magneto-mechanical properties of such materials, is briefly summarised and comparisons are made with experimental data. The effects of filling the inter-fibre void with compliant (polymeric) matrices have also been explored. In general the modeling approach gives reliable predictions, particularly when the network architecture has been characterised using X-ray tomography. © 2005 Published by Elsevier Ltd.
Semantic discriminant mapping for classification and browsing of remote sensing textures and objects