7 resultados para neurobiology
em Cambridge University Engineering Department Publications Database
Resumo:
Animals, in particular humans, frequently punish other individuals who behave negatively or uncooperatively towards them. In animals, this usually serves to protect the personal interests of the individual concerned, and its kin. However, humans also punish altruistically, in which the act of punishing is personally costly. The propensity to do so has been proposed to reflect the cultural acquisition of norms of behaviour, which incorporates the desire to uphold equity and fairness, and promotes cooperation. Here, we review the proximate neurobiological basis of punishment, considering the motivational processes that underlie punishing actions.
Resumo:
Humans, like other animals, alter their behavior depending on whether a threat is close or distant. We investigated spatial imminence of threat by developing an active avoidance paradigm in which volunteers were pursued through a maze by a virtual predator endowed with an ability to chase, capture, and inflict pain. Using functional magnetic resonance imaging, we found that as the virtual predator grew closer, brain activity shifted from the ventromedial prefrontal cortex to the periaqueductal gray. This shift showed maximal expression when a high degree of pain was anticipated. Moreover, imminence-driven periaqueductal gray activity correlated with increased subjective degree of dread and decreased confidence of escape. Our findings cast light on the neural dynamics of threat anticipation and have implications for the neurobiology of human anxiety-related disorders.
Resumo:
Human choices are remarkably susceptible to the manner in which options are presented. This so-called "framing effect" represents a striking violation of standard economic accounts of human rationality, although its underlying neurobiology is not understood. We found that the framing effect was specifically associated with amygdala activity, suggesting a key role for an emotional system in mediating decision biases. Moreover, across individuals, orbital and medial prefrontal cortex activity predicted a reduced susceptibility to the framing effect. This finding highlights the importance of incorporating emotional processes within models of human choice and suggests how the brain may modulate the effect of these biasing influences to approximate rationality.
Resumo:
The relationship between pain and cognitive function is of theoretical and clinical interest, exemplified by observations that attention-demanding activities reduce pain in chronically afflicted patients. Previous studies have concentrated on phasic pain, which bears little correspondence to clinical pain conditions. Indeed, phasic pain is often associated with differential or opposing effects to tonic pain in behavioral, lesion, and pharmacological studies. To address how cognitive engagement interacts with tonic pain, we assessed the influence of an attention-demanding cognitive task on pain-evoked neural responses in an experimental model of chronic pain, the capsaicin-induced heat hyperalgesia model. Using functional magnetic resonance imaging (fMRI), we show that activity in the orbitofrontal and medial prefrontal cortices, insula, and cerebellum correlates with the intensity of tonic pain. This pain-related activity in medial prefrontal cortex and cerebellum was modulated by the demand level of the cognitive task. Our findings highlight a role for these structures in the integration of motivational and cognitive functions associated with a physiological state of injury. Within the limitations of an experimental model of pain, we suggest that the findings are relevant to understanding both the neurobiology and pathophysiology of chronic pain and its amelioration by cognitive strategies.
Resumo:
© 2012 Elsevier Ltd. Motor behavior may be viewed as a problem of maximizing the utility of movement outcome in the face of sensory, motor and task uncertainty. Viewed in this way, and allowing for the availability of prior knowledge in the form of a probability distribution over possible states of the world, the choice of a movement plan and strategy for motor control becomes an application of statistical decision theory. This point of view has proven successful in recent years in accounting for movement under risk, inferring the loss function used in motor tasks, and explaining motor behavior in a wide variety of circumstances.