6 resultados para nervous control
em Cambridge University Engineering Department Publications Database
Resumo:
Uncertainty is ubiquitous in our sensorimotor interactions, arising from factors such as sensory and motor noise and ambiguity about the environment. Setting it apart from previous theories, a quintessential property of the Bayesian framework for making inference about the state of world so as to select actions, is the requirement to represent the uncertainty associated with inferences in the form of probability distributions. In the context of sensorimotor control and learning, the Bayesian framework suggests that to respond optimally to environmental stimuli the central nervous system needs to construct estimates of the sensorimotor transformations, in the form of internal models, as well as represent the structure of the uncertainty in the inputs, outputs and in the transformations themselves. Here we review Bayesian inference and learning models that have been successful in demonstrating the sensitivity of the sensorimotor system to different forms of uncertainty as well as recent studies aimed at characterizing the representation of the uncertainty at different computational levels.
Resumo:
The goal of this work was to investigate stability in relation to the magnitude and direction of forces applied by the hand. The endpoint stiffness and joint stiffness of the arm were measured during a postural task in which subjects exerted up to 30% maximum voluntary force in each of four directions while controlling the position of the hand. All four coefficients of the joint stiffness matrix were found to vary linearly with both elbow and shoulder torque. This contrasts with the results of a previous study, which employed a force control task and concluded that the joint stiffness coefficients varied linearly with either shoulder or elbow torque but not both. Joint stiffness was transformed into endpoint stiffness to compare the effect on stability as endpoint force increased. When the joint stiffness coefficients were modeled as varying with the net torque at only one joint, as in the previous study, we found that hand position became unstable if endpoint force exceeded about 22 N in a specific direction. This did not occur when the joint stiffness coefficients were modeled as varying with the net torque at both joints, as in the present study. Rather, hand position became increasingly more stable as endpoint force increased for all directions of applied force. Our analysis suggests that co-contraction of biarticular muscles was primarily responsible for the increased stability. This clearly demonstrates how the central nervous system can selectively adapt the impedance of the arm in a specific direction to stabilize hand position when the force applied by the hand has a destabilizing effect in that direction.
Resumo:
This study investigated the neuromuscular mechanisms underlying the initial stage of adaptation to novel dynamics. A destabilizing velocity-dependent force field (VF) was introduced for sets of three consecutive trials. Between sets a random number of 4-8 null field trials were interposed, where the VF was inactivated. This prevented subjects from learning the novel dynamics, making it possible to repeatedly recreate the initial adaptive response. We were able to investigate detailed changes in neural control between the first, second and third VF trials. We identified two feedforward control mechanisms, which were initiated on the second VF trial and resulted in a 50% reduction in the hand path error. Responses to disturbances encountered on the first VF trial were feedback in nature, i.e. reflexes and voluntary correction of errors. However, on the second VF trial, muscle activation patterns were modified in anticipation of the effects of the force field. Feedforward cocontraction of all muscles was used to increase the viscoelastic impedance of the arm. While stiffening the arm, subjects also exerted a lateral force to counteract the perturbing effect of the force field. These anticipatory actions indicate that the central nervous system responds rapidly to counteract hitherto unfamiliar disturbances by a combination of increased viscoelastic impedance and formation of a crude internal dynamics model.
Resumo:
Humans are able to learn tool-handling tasks, such as carving, demonstrating their competency to make and vary the direction of movements in unstable environments. It has been shown that when a single reaching movement is repeated in unstable dynamics, the central nervous system (CNS) learns an impedance internal model to compensate for the environment instability. However, there is still no explanation for how humans can learn to move in various directions in such environments. In this study, we investigated whether and how humans compensate for instability while learning two different reaching movements simultaneously. Results show that when performing movements in two different directions, separated by a 35° angle, the CNS was able to compensate for the unstable dynamics. After adaptation, the force was found to be similar to the free movement condition, but stiffness increased in the direction of instability, specifically for each direction of movement. Our findings suggest that the CNS either learned an internal model generalizing over different movements, or alternatively that it was able to switch between specific models acquired simultaneously. © 2008 IEEE.
Resumo:
Humans are able to learn tool-handling tasks, such as carving, demonstrating their competency to make movements in unstable environments with varied directions. When faced with a single direction of instability, humans learn to selectively co-contract their arm muscles tuning the mechanical stiffness of the limb end point to stabilize movements. This study examines, for the first time, subjects simultaneously adapting to two distinct directions of instability, a situation that may typically occur when using tools. Subjects learned to perform reaching movements in two directions, each of which had lateral instability requiring control of impedance. The subjects were able to adapt to these unstable interactions and switch between movements in the two directions; they did so by learning to selectively control the end-point stiffness counteracting the environmental instability without superfluous stiffness in other directions. This finding demonstrates that the central nervous system can simultaneously tune the mechanical impedance of the limbs to multiple movements by learning movement-specific solutions. Furthermore, it suggests that the impedance controller learns as a function of the state of the arm rather than a general strategy. © 2011 the American Physiological Society.
Resumo:
The nervous system implements a networked control system in which the plants take the form of limbs, the controller is the brain, and neurons form the communication channels. Unlike standard networked control architectures, there is no periodic sampling, and the fundamental units of communication contain little numerical information. This paper describes a novel communication channel, modeled after spiking neurons, in which the transmitter integrates an input signal and sends out a spike when the integral reaches a threshold value. The reciever then filters the sequence of spikes to approximately reconstruct the input signal. It is shown that for appropriate choices of channel parameters, stable feedback control over these spiking channels is possible. Furthermore, good tracking performance can be achieved. The data rate of the channel increases linearly with the size of the inputs. Thus, when placed in a feedback loop, small loop gains imply a low data rate. ©2010 IEEE.