8 resultados para multi band
em Cambridge University Engineering Department Publications Database
Resumo:
Amplitude demodulation is an ill-posed problem and so it is natural to treat it from a Bayesian viewpoint, inferring the most likely carrier and envelope under probabilistic constraints. One such treatment is Probabilistic Amplitude Demodulation (PAD), which, whilst computationally more intensive than traditional approaches, offers several advantages. Here we provide methods for estimating the uncertainty in the PAD-derived envelopes and carriers, and for learning free-parameters like the time-scale of the envelope. We show how the probabilistic approach can naturally handle noisy and missing data. Finally, we indicate how to extend the model to signals which contain multiple modulators and carriers.
Resumo:
This paper reports on a switchable multi-band filter response achieved within a single micro-electro-mechanical device. A prototype device fabricated in a SOI process demonstrates a voltage programmable and tunable, dual-band, band-pass/band-stop response. Both analytical and finite element models are introduced in this paper to elucidate the operating principle of the filter and to guide filter design. Voltage programmability of the filter characteristic is demonstrated with the ability to independently tune the centre frequency and bandwidth for each band. A representative measurement shows that the minimum 3 dB-bandwidth (BW) is 155 Hz, 140Hz, and 20 dB-BW is 216 Hz, 203Hz for the upper-band and lower-band center frequencies located at 131.5 kHz and 130.7 kHz, respectively. © 2011 IEEE.
Resumo:
Herein we report on the transport characteristics of rapid pulsed vacuum-arc thermally annealed, individual and network multi-walled carbon nanotubes. Substantially reduced defect densities (by at least an order of magnitude), measured by micro-Raman spectroscopy, and were achieved by partial reconstruction of the bamboo-type defects during thermal pulsing compared with more traditional single-pulse thermal annealing. Rapid pulsed annealed processed networks and individual multi-walled nanotubes showed a consistent increase in conductivity (of over a factor of five at room temperature), attributed to the reduced number density of resistive axial interfaces and, in the case of network samples, the possible formation of structural bonds between crossed nanotubes. Compared to the highly defective as-grown nanotubes, the pulsed annealed samples exhibited reduced temperature sensitivity in their transport characteristics signifying the dominance of scattering events from structural defects. Transport measurements in the annealed multi-walled nanotubes deviated from linear Ohmic, typically metallic, behavior to an increasingly semiconducting-like behavior attributed to thermally induced axial strains. Rapid pulsed annealed networks had an estimated band gap of 11.26 meV (as-grown; 6.17 meV), and this observed band gap enhancement was inherently more pronounced for individual nanotubes compared with the networks most likely attributed to mechanical pinning effect of the probing electrodes which possibly amplifies the strain induced band gap. In all instances the estimated room temperature band gaps increased by a factor of two. The gating performance of back-gated thin-film transistor structures verified that the observed weak semiconductivity (p-type) inferred from the transport characteristic at room temperature. © 2014 Copyright Taylor & Francis Group, LLC.
Resumo:
In this paper we demonstrate photonic band-edge laser emission from emulsion-based polymer dispersed liquid crystals. The lasing medium consists of dye-doped chiral nematic droplets dispersed within a polymer matrix that spontaneously align as the film dries. Such lasers can be easily formed on single substrates with no alignment layers. The system combines the self-organizing periodic structure of chiral nematic liquid crystals with the simplicity of the emulsion procedure so as to produce a material that retains the emission characteristics of band-edge lasers yet can be readily coated. Sequential and stacked layers demonstrate the possibility of achieving simultaneous multi-wavelength laser output from glass, metallic, and flexible substrates.
Resumo:
We report the first measurement of two-photon absorption (TPA) and self-phase modulation in an InGaAsP/InP multi-quantum-well waveguide. The TPA coefficient, β2, was found to be 60±10 cm/GW at 1.55 μm. Despite operating at 200 nm from the band edge, self-phase modulation as high as 8±2 rad was observed for 30-ps optical pulses at 3.8-W peak input power. A theoretical calculation indicates that this enhanced phase modulation is primarily due to bandfilling in the quantum wells and the free-carrier plasma effect.
Resumo:
A vertically aligned multi-walled carbon nanotube (VACNT) film has been characterized by rectangular waveguide measurements. The complex scattering parameters (S-parameters) are measured by a vector network analyzer at X-band frequencies. The effective complex permittivity and permeability of the VACNT film have been extracted using the Nicolson-Ross-Weir (NWR) approach. The extracted parameters are verified by full wave simulations (CST Microwave Studio) and very good agreement has been obtained. A systematic error analysis is presented and the errors are within the acceptable range. The performance of VACNT films as an absorber is examined, and comparison with the conventional carbon loaded materials shows that a 90% size reduction is possible whilst maintaining the same absorption level. © 2011 EUROPEAN MICROWAVE ASSOC.
Resumo:
Avalanches, debris flows, and landslides are geophysical hazards, which involve rapid mass movement of granular solids, water and air as a single-phase system. The dynamics of a granular flow involve at least three distinct scales: the micro-scale, meso-scale, and the macro-scale. This study aims to understand the ability of continuum models to capture the micro-mechanics of dry granular collapse. Material Point Method (MPM), a hybrid Lagrangian and Eulerian approach, with Mohr-Coulomb failure criterion is used to describe the continuum behaviour of granular column collapse, while the micromechanics is captured using Discrete Element Method (DEM) with tangential contact force model. The run-out profile predicted by the continuum simulations matches with DEM simulations for columns with small aspect ratios ('h/r' < 2), however MPM predicts larger run-out distances for columns with higher aspect ratios ('h/r' > 2). Energy evolution studies in DEM simulations reveal higher collisional dissipation in the initial free-fall regime for tall columns. The lack of a collisional energy dissipation mechanism in MPM simulations results in larger run-out distances. Micro-structural effects, such as shear band formations, were observed both in DEM and MPM simulations. A sliding flow regime is observed above the distinct passive zone at the core of the column. Velocity profiles obtained from both the scales are compared to understand the reason for a slow flow run-out mobilization in MPM simulations. © 2013 AIP Publishing LLC.
Resumo:
We demonstrate automatic operation of a cooler-less tunable-laser based WDM-PON system. Using a pilot-tone based overhead channel and centralized wavelength locking scheme, 1 Gb/s and 10 Gb/s data transmission is demonstrated in a multi-user set-up. © 2013 Optical Society of America.