308 resultados para motion washout filter
em Cambridge University Engineering Department Publications Database
Resumo:
Optical motion capture systems suffer from marker occlusions resulting in loss of useful information. This paper addresses the problem of real-time joint localisation of legged skeletons in the presence of such missing data. The data is assumed to be labelled 3d marker positions from a motion capture system. An integrated framework is presented which predicts the occluded marker positions using a Variable Turn Model within an Unscented Kalman filter. Inferred information from neighbouring markers is used as observation states; these constraints are efficient, simple, and real-time implementable. This work also takes advantage of the common case that missing markers are still visible to a single camera, by combining predictions with under-determined positions, resulting in more accurate predictions. An Inverse Kinematics technique is then applied ensuring that the bone lengths remain constant over time; the system can thereby maintain a continuous data-flow. The marker and Centre of Rotation (CoR) positions can be calculated with high accuracy even in cases where markers are occluded for a long period of time. Our methodology is tested against some of the most popular methods for marker prediction and the results confirm that our approach outperforms these methods in estimating both marker and CoR positions. © 2012 Springer-Verlag.
Resumo:
Traditional approaches to upper body pose estimation using monocular vision rely on complex body models and a large variety of geometric constraints. We argue that this is not ideal and somewhat inelegant as it results in large processing burdens, and instead attempt to incorporate these constraints through priors obtained directly from training data. A prior distribution covering the probability of a human pose occurring is used to incorporate likely human poses. This distribution is obtained offline, by fitting a Gaussian mixture model to a large dataset of recorded human body poses, tracked using a Kinect sensor. We combine this prior information with a random walk transition model to obtain an upper body model, suitable for use within a recursive Bayesian filtering framework. Our model can be viewed as a mixture of discrete Ornstein-Uhlenbeck processes, in that states behave as random walks, but drift towards a set of typically observed poses. This model is combined with measurements of the human head and hand positions, using recursive Bayesian estimation to incorporate temporal information. Measurements are obtained using face detection and a simple skin colour hand detector, trained using the detected face. The suggested model is designed with analytical tractability in mind and we show that the pose tracking can be Rao-Blackwellised using the mixture Kalman filter, allowing for computational efficiency while still incorporating bio-mechanical properties of the upper body. In addition, the use of the proposed upper body model allows reliable three-dimensional pose estimates to be obtained indirectly for a number of joints that are often difficult to detect using traditional object recognition strategies. Comparisons with Kinect sensor results and the state of the art in 2D pose estimation highlight the efficacy of the proposed approach.
Resumo:
Sequential Monte Carlo methods, also known as particle methods, are a widely used set of computational tools for inference in non-linear non-Gaussian state-space models. In many applications it may be necessary to compute the sensitivity, or derivative, of the optimal filter with respect to the static parameters of the state-space model; for instance, in order to obtain maximum likelihood model parameters of interest, or to compute the optimal controller in an optimal control problem. In Poyiadjis et al. [2011] an original particle algorithm to compute the filter derivative was proposed and it was shown using numerical examples that the particle estimate was numerically stable in the sense that it did not deteriorate over time. In this paper we substantiate this claim with a detailed theoretical study. Lp bounds and a central limit theorem for this particle approximation of the filter derivative are presented. It is further shown that under mixing conditions these Lp bounds and the asymptotic variance characterized by the central limit theorem are uniformly bounded with respect to the time index. We demon- strate the performance predicted by theory with several numerical examples. We also use the particle approximation of the filter derivative to perform online maximum likelihood parameter estimation for a stochastic volatility model.