8 resultados para molten salts
em Cambridge University Engineering Department Publications Database
Resumo:
Seeded zone-melt recrystallization using a dual electron beam system has been performed on silicon-on-insulator material, which was prepared with single-crystal silicon filling of the seed windows by selective epitaxial growth. The crystal quality has been assessed by a variety of microscopic techniques, and it is shown that single-crystal films 0.5-1.0 μm thick over 1.0 μm of isolating oxide may be prepared by this method. These films have considerably less lateral variation in thickness than standard material, in which the windows are not so filled. The filling method is suitable for both single- and multiple-layer silicon-on-insulator, and gives the advantages of excellent layer uniformity after recrystallization and improved planarity of the whole chip structure. Experiments using various amounts of seed window filling have shown that the lateral variations of silicon film thickness seen in unplanarized material are due to stress relief in the cap oxide when the silicon film is molten, rather than the effect previously postulated in which they were assumed to be due to the contraction of silicon on melting.
Resumo:
The effect of KI encapsulation in narrow (HiPCO) single-walled carbon nanotubes is studied via Raman spectroscopy and optical absorption. The analysis of the data explores the interplay between strain and structural modifications, bond-length changes, charge transfer, and electronic density of states. KI encapsulation appears to be consistent with both charge transfer and strain that shrink both the C-C bonds and the overall nanotube along the axial direction. The charge transfer in larger semiconducting nanotubes is low and comparable with some cases of electrochemical doping, while optical transitions between pairs of singularities of the density of states are quenched for narrow metallic nanotubes. Stronger changes in the density of states occur in some energy ranges and are attributed to polarization van der Waals interactions caused by the ionic encapsulate. Unlike doping with other species, such as atoms and small molecules, encapsulation of inorganic compounds via the molten-phase route provides stable effects due to maximal occupation of the nanotube inner space.
Resumo:
The dramatic increase in hole quality on single crystalline silicon with an 1 μm fiber laser has been reported recently, it redefines the processing options for Si at that wavelength. This study investigated the effects of the MOPA based pulse tuning on the changes of the machined depth and the mass removal mechanism for the generation of microvia holes. Hole depths were measured and surface morphology studied using SEM and optical interferometric profilometry. The pulse peak power was found to strongly influence the material removal mechanism with fixed pulse duration. High peak powers (>1 kW) gave vaporization dominated ablation, left a limited re solidified molten layer and clean hole formation. The pulse duration was found to strongly influence the machined depth. Longer pulse durations generated deeper holes with constant peak power (>1 kW). In comparison with the DPSS UV laser, the IR fiber laser of longer pulse durations machined deeper holes and generated less resolidifed melt beyond the hole rim at high fluencies. The comparison suggests that some applications (microvia drilling) of the DPSS UV laser can be replaced with the more flexible, low cost IR fiber laser. © KSPE and Springer 2012.
Resumo:
In this work, we performed an evaluation of decay heat power of advanced, fast spectrum, lead and molten salt-cooled reactors, with flexible conversion ratio. The decay heat power was calculated using the BGCore computer code, which explicitly tracks over 1700 isotopes in the fuel throughout its burnup and subsequent decay. In the first stage, the capability of the BGCore code to accurately predict the decay heat power was verified by performing a benchmark calculation for a typical UO2 fuel in a Pressurized Water Reactor environment against the (ANSI/ANS-5.1-2005, "Decay Heat Power in Light Water Reactors," American National Standard) standard. Very good agreement (within 5%) between the two methods was obtained. Once BGCore calculation capabilities were verified, we calculated decay power for fast reactors with different coolants and conversion ratios, for which no standard procedure is currently available. Notable differences were observed for the decay power of the advanced reactor as compared with the conventional UO2 LWR. The importance of the observed differences was demonstrated by performing a simulation of a Station Blackout transient with the RELAP5 computer code for a lead-cooled fast reactor. The simulation was performed twice: using the code-default ANS-79 decay heat curve and using the curve calculated specifically for the studied core by BGCore code. The differences in the decay heat power resulted in failure to meet maximum cladding temperature limit criteria by ∼100 °C in the latter case, while in the transient simulation with the ANS-79 decay heat curve, all safety limits were satisfied. The results of this study show that the design of new reactor safety systems must be based on decay power curves specific to each individual case in order to assure the desired performance of these systems. © 2009 Elsevier B.V. All rights reserved.
Resumo:
The potential for thorium as an alternative or supplement to uranium in fission power generation has long been recognised, and several reactors, of various types, have already operated using thorium-based fuels. Accelerator Driven Subcritical (ADS) systems have benefits and drawbacks when compared to conventional critical thorium reactors, for both solid and molten salt fuels. None of the four options - liquid or solid, with or without an accelerator - can yet be rated as better or worse than the other three, given today's knowledge. We outline the research that will be necessary to lead to an informed choice. Copyright © 2012 by IEEE.