3 resultados para molecular size

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hot-pressed laminates with a [0/90]48 lay-up, consisting of 83% by volume of ultra high molecular-weight polyethylene (UHMWPE) fibres, and 17% by volume of polyurethane (PU) matrix, were cut into cantilever beams and subjected to transverse end-loading. The collapse mechanisms were observed both visually and by X-ray scans. Short beams deform elastically and collapse plastically in longitudinal shear, with a shear strength comparable to that observed in double notch, interlaminar shear tests. In contrast, long cantilever beams deform in bending and collapse via a plastic hinge at the built-in end of the beam. The plastic hinge is formed by two wedge-shaped microbuckle zones that grow in size and in intensity with increasing hinge rotation. This new mode of microbuckling under macroscopic bending involves both elastic bending and shearing of the plies, and plastic shear of the interface between each ply. The double-wedge pattern contrasts with the more usual parallel-sided plastic microbuckle that occurs in uniaxial compression. Finite element simulations and analytical models give additional insight into the dominant material and geometric parameters that dictate the collapse response of the UHMWPE composite beam in bending. Detailed comparisons between the observed and predicted collapse responses are used in order to construct a constitutive model for laminated UHMWPE composites. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell biology is characterised by low molecule numbers and coupled stochastic chemical reactions with intrinsic noise permeating and dominating the interactions between molecules. Recent work [9] has shown that in such environments there are hard limits on the accuracy with which molecular populations can be controlled and estimated. These limits are predicated on a continuous diffusion approximation of the target molecule (although the remainder of the system is non-linear and discrete). The principal result of [9] assumes that the birth rate of the signalling species is linearly dependent on the target molecule population size. In this paper, we investigate the situation when the entire system is kept discrete, and arbitrary non-linear coupling is allowed between the target molecule and downstream signalling molecules. In this case it is possible, by relying solely on the event triggered nature of control and signalling reactions, to define non-linear reaction rate modulation schemes that achieve improved performance in certain parameter regimes. These schemes would not appear to be biologically relevant, raising the question of what are an appropriate set of assumptions for obtaining biologically meaningful results. © 2013 EUCA.