8 resultados para molecular dynamics

em Cambridge University Engineering Department Publications Database


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thin film transistors (TFTs) utilizing an hydrogenated amorphous silicon (a-Si:H) channel layer exhibit a shift in the threshold voltage with time under the application of a gate bias voltage due to the creation of metastable defects. These defects are removed by annealing the device with zero gate bias applied. The defect removal process can be characterized by a thermalization energy which is, in turn, dependent upon an attempt-to-escape frequency for defect removal. The threshold voltage of both hydrogenated and deuterated amorphous silicon (a-Si:D) TFTs has been measured as a function of annealing time and temperature. Using a molecular dynamics simulation of hydrogen and deuterium in a silicon network in the H2 * configuration, it is shown that the experimental results are consistent with an attempt-to-escape frequency of (4.4 ± 0.3) × 1013 Hz and (5.7 ± 0.3) × 1013 Hz for a-Si:H and a-Si:D respectively which is attributed to the oscillation of the Si-H and Si-D bonds. Using this approach, it becomes possible to describe defect removal in hydrogenated and deuterated material by the thermalization energies of (1.552 ± 0.003) eV and (1.559 ± 0.003) eV respectively. This correlates with the energy per atom of the Si-H and Si-D bonds. © 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The viscosity-temperature relation is determined for the water models SPC/E, TIP4P, TIP4P/Ew, and TIP4P/2005 by considering Poiseuille flow inside a nano-channel using molecular dynamics. The viscosity is determined by fitting the resulting velocity profile (away from the walls) to the continuum solution for a Newtonian fluid and then compared to experimental values. The results show that the TIP4P/2005 model gives the best prediction of the viscosity for the complete range of temperatures for liquid water, and thus it is the preferred water model of these considered here for simulations where the magnitude of viscosity is crucial. On the other hand, with the TIP4P model, the viscosity is severely underpredicted, and overall the model performed worst, whereas the SPC/E and TIP4P/Ew models perform moderately.