15 resultados para mode of action

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of initial soil fabric and mode of shearing on quasi-steady state line in void ratiostress space are studied by employing the Distinct Element Method numerical analysis. The results show that the initial soil fabric and the mode of shearing have a profound effect on the location of the quasi-steady state line. The evolution of the soil fabric during the course of undrained shearing shows that the specimens with different initial soil fabrics reach quasi-steady state at various soil fabric conditions. At quasi-steady state, the soil fabric has a significant adjustment to change its behavior from contractive to dilative. As the stress state approaches the steady state, the soil fabrics of different initial conditions become similar. The numerical analysis results are compared qualitatively with the published experimental data and the effects of specimen reconstitution methods and mode of shearing found in the experimental studies canbe systematically explained by the numerical analysis. © 2009 Taylor & Francis Group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quest for materials capable of realizing the next generation of electronic and photonic devices continues to fuel research on the electronic, optical and vibrational properties of graphene. Few-layer graphene (FLG) flakes with less than ten layers each show a distinctive band structure. Thus, there is an increasing interest in the physics and applications of FLGs. Raman spectroscopy is one of the most useful and versatile tools to probe graphene samples. Here, we uncover the interlayer shear mode of FLGs, ranging from bilayer graphene (BLG) to bulk graphite, and suggest that the corresponding Raman peak measures the interlayer coupling. This peak scales from ∼43cm -1 in bulk graphite to ∼31cm -1 in BLG. Its low energy makes it sensitive to near-Dirac point quasiparticles. Similar shear modes are expected in all layered materials, providing a direct probe of interlayer interactions. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an analytical formulation of frequency splitting observed in the elliptical modes of single crystal silicon (SCS) micromechanical disk resonators. Taking the anisotropic elasticity of SCS into account, new formulae for computing modal mass and modal stiffness are first derived for accurate prediction of the modal frequency. The derived results are in good agreement with finite element simulation, showing a factor of 10 improvement in the prediction accuracy as compared to using the formula for the isotropic case. In addition, the analysis successfully explains the effect of anisotropy on the modal frequency splitting of primary elliptical modes, for which the maximum modal displacement is aligned with the directions of maximum (1 1 0) and minimum (1 0 0) elasticity respectively on a (1 0 0) SCS wafer. The measured frequency splitting of other degenerate modes is due to the manufacturing imperfections. © 2014 IOP Publishing Ltd.