11 resultados para mind
em Cambridge University Engineering Department Publications Database
Resumo:
A decision is a commitment to a proposition or plan of action based on evidence and the expected costs and benefits associated with the outcome. Progress in a variety of fields has led to a quantitative understanding of the mechanisms that evaluate evidence and reach a decision. Several formalisms propose that a representation of noisy evidence is evaluated against a criterion to produce a decision. Without additional evidence, however, these formalisms fail to explain why a decision-maker would change their mind. Here we extend a model, developed to account for both the timing and the accuracy of the initial decision, to explain subsequent changes of mind. Subjects made decisions about a noisy visual stimulus, which they indicated by moving a handle. Although they received no additional information after initiating their movement, their hand trajectories betrayed a change of mind in some trials. We propose that noisy evidence is accumulated over time until it reaches a criterion level, or bound, which determines the initial decision, and that the brain exploits information that is in the processing pipeline when the initial decision is made to subsequently either reverse or reaffirm the initial decision. The model explains both the frequency of changes of mind as well as their dependence on both task difficulty and whether the initial decision was accurate or erroneous. The theoretical and experimental findings advance the understanding of decision-making to the highly flexible and cognitive acts of vacillation and self-correction.
Resumo:
A recent study has found that toddlers do not compensate for an artificial alteration in a vowel they hear themselves producing. This raises questions about how young children learn speech sounds. © 2012 Elsevier Ltd.
Resumo:
After committing to an action, a decision-maker can change their mind to revise the action. Such changes of mind can even occur when the stream of information that led to the action is curtailed at movement onset. This is explained by the time delays in sensory processing and motor planning which lead to a component at the end of the sensory stream that can only be processed after initiation. Such post-initiation processing can explain the pattern of changes of mind by asserting an accumulation of additional evidence to a criterion level, termed change-of-mind bound. Here we test the hypothesis that physical effort associated with the movement required to change one's mind affects the level of the change-of-mind bound and the time for post-initiation deliberation. We varied the effort required to change from one choice target to another in a reaching movement by varying the geometry of the choice targets or by applying a force field between the targets. We show that there is a reduction in the frequency of change of mind when the separation of the choice targets would require a larger excursion of the hand from the initial to the opposite choice. The reduction is best explained by an increase in the evidence required for changes of mind and a reduced time period of integration after the initial decision. Thus the criteria to revise an initial choice is sensitive to energetic costs.
Resumo:
Sensor networks can be naturally represented as graphical models, where the edge set encodes the presence of sparsity in the correlation structure between sensors. Such graphical representations can be valuable for information mining purposes as well as for optimizing bandwidth and battery usage with minimal loss of estimation accuracy. We use a computationally efficient technique for estimating sparse graphical models which fits a sparse linear regression locally at each node of the graph via the Lasso estimator. Using a recently suggested online, temporally adaptive implementation of the Lasso, we propose an algorithm for streaming graphical model selection over sensor networks. With battery consumption minimization applications in mind, we use this algorithm as the basis of an adaptive querying scheme. We discuss implementation issues in the context of environmental monitoring using sensor networks, where the objective is short-term forecasting of local wind direction. The algorithm is tested against real UK weather data and conclusions are drawn about certain tradeoffs inherent in decentralized sensor networks data analysis. © 2010 The Author. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
Resumo:
Turbomachinery noise radiating into the rearward arc is an important problem. This noise is scattered by the trailing edges of the nacelle and the jet exhaust, and interacts with the shear layers between the external flow, bypass stream and jet, en route to the far field. In the past a range of relevant model problems involving semi-infinite cylinders have been solved. However, one limitation of these previous solutions is that they do not allow for the jet nozzle protruding a finite distance beyond the end of the nacelle (or in certain configurations being buried a finite distance upstream). With this in mind, we have used the matrix Wiener-Hopf technique to allow precisely this finite nacelle-jet nozzle separation to be included. We have previously reported results for the case of hard-walled ducts, which requires factorisation of a 2 × 2 matrix. In this paper we extend this work by allowing one of the duct walls, in this case the outer wall of the jet pipe, to be acoustically lined. This results in the need to factorise a 3 × 3 matrix, which is completed by use of a combination of pole-removal and Pad́e approximant techniques. Sample results are presented, investigating in particular the effects of exit plane stagger and liner impedance. Here we take the mean flow to be zero, but extension to nonzero Mach numbers in the core and bypass flow has also been completed. Copyright © 2009 by Nigel Peake & Ben Veitch.