12 resultados para mild winter

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In winter, natural ventilation can be achieved either through mixing ventilation or upward displacement ventilation (P.F. Linden, The fluid mechanics of natural ventilation, Annual Review of Fluid Mechanics 31 (1999) pp. 201-238). We show there is a significant energy saving possible by using mixing ventilation, in the case that the internal heat gains are significant, and illustrate these savings using an idealized model, which predicts that with internal heat gains of order 0.1 kW per person, mixing ventilation uses of a fraction of order 0.2-0.4 of the heat load of displacement ventilation assuming a well-insulated building. We then describe a strategy for such mixing natural ventilation in an atrium style building in which the rooms surrounding the atrium are able to vent directly to the exterior and also through the atrium to the exterior. The results are motivated by the desire to reduce the energy burden in large public buildings such as hospitals, schools or office buildings centred on atria. We illustrate a strategy for the natural mixing ventilation in order that the rooms surrounding the atrium receive both pre-heated but also sufficiently fresh air, while the central atrium zone remains warm. We test the principles with some laboratory experiments in which a model air chamber is ventilated using both mixing and displacement ventilation, and compare the energy loads in each case. We conclude with a discussion of the potential applications of the approach within the context of open plan atria type office buildings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thinning of heat-exchanger tubes by erosion-corrosion has been a problem in fluidized bed combustors (FBCs), particularly at lower metal temperatures where thicker, mechanically protective oxide scales are unable to form. Many laboratory-scale tests have shown a decrease in material loss at higher temperatures, in a similar manner to FBC boilers, but also show a decrease in wastage at low temperatures (e.g. 200°C) which has not been detected in boilers. It has been suggested that this difference is due to laboratory tests being carried out isothermally whereas in a FBC boiler the fluidized bed is considerably hotter than the metal heat exchanger tubing. In this laboratory study the simulation was therefore improved by internally cooling one of the two low carbon steel specimens. These were rotated in a horizontal plane within a lightly fluidized bed with relative particle velocities of 1.3-2.5 m s-1. Tests were carried out over a range of bed temperatures (200-500°C) and cooled specimen surface temperatures (115-500°C), with a maximum temperature difference between the two of 320°C. Although specimens exposed isothermally still showed maximum wastage at intermediate temperatures (about 350°C), those which were cooled showed high levels of wastage at temperatures as low as 200°C in a similar manner to FBC boilers. Cooling may modify the isothermal erosion-corrosion curve, causing it to broaden and the maximum wastage rate to shift to lower temperatures. © 1995.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vernalization is the process whereby the floral transition is promoted through exposure of plants to long periods of cold temperature or winter. A requirement for vernalization aligns flowering with the seasons to ensure that their reproductive phase occurs in favorable conditions. The mitotic stability of vernalization, suggestive of an epigenetic mechanism, has intrigued researchers for many years. Genetic analysis of the vernalization requirement in Arabidopsis has identified key floral repressor genes, FRI and FLC. The action of these floral repressors is antagonized by vernalization and the activity of a set of genes grouped into the autonomous floral pathway. Analysis of the vernalization pathway has defined a series of epigenetic regulators crucial for "cellular-memory" of the cold signal, whereas the autonomous pathway appears to function in part through posttranscriptional mechanisms. The mechanism of the vernalization requirement, which is now being explored in a range of plant species, should uncover the evolutionary origins of this key agronomic trait.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particle concentration is known as a main factor that affects erosion rate of pipe bends in pneumatic conveyors. With consideration of different bend radii, the effect of particle concentration on weight loss of mild steel bends has been investigated in an industrial scale test rig. Experimental results show that there was a significant reduction of the specific erosion rate for high particle concentrations. This reduction was considered to be as a result of the shielding effect during the particle impacts. An empirical model is given. Also a theoretical study of scaling on the shielding effect, and comparisons with some existing models, are presented. It is found that the reduction in specific erosion rate (relative to particle concentration) has a stronger relationship in conveying pipelines than has been found in the erosion tester. © 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional direct numerical simulation (DNS) of exhaust gas recirculation (EGR)-type turbulent combustion operated in moderate and intense low-oxygen dilution (MILD) condition has been carried out to study the flame structure and flame interaction. In order to achieve adequate EGR-type initial/inlet mixture fields, partially premixed mixture fields which are correlated with the turbulence are carefully preprocessed. The chemical kinetics is modelled using a skeletal mechanism for methane-air combustion. The results suggest that the flame fronts have thin flame structure and the direct link between the mean reaction rate and scalar dissipation rate remains valid in the EGR-type combustion with MILD condition. However, the commonly used canonical flamelet is not fully representative for MILD combustion. During the flame-flame interactions, the heat release rate increases higher than the maximum laminar flame value, while the gradient of progress variable becomes smaller than laminar value. It is also proposed that the reaction rate and the scalar gradient can be used as a marker for the flame interaction. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of three-dimensional Direct Numerical Simulation (DNS) of Moderate, Intense Low-oxygen Dilution (MILD) and conventional premixed turbulent combustion conducted using a skeletal mechanism including the effects of non-unity Lewis numbers and temperature dependent transport properties are analysed to investigate combustion characteristics using scalar gradient information. The DNS data is also used to synthesise laser induced fluorescence (LIF) signals of OH, CH2O, and CHO. These signals are analysed to verify if they can be used to study turbulent MILD combustion and it has been observed that at least two (OH and CH2O) LIF signals are required since the OH increase across the reaction zone is smaller in MILD combustion compared to premixed combustion. The scalar gradient PDFs conditioned on the reaction rate obtained from the DNS data and synthesised LIF signals suggests a strong gradient in the direction normal to the MILD reaction zone with moderate reaction rate implying flamelet combustion. However, the PDF of the normal gradient is as broad as for the tangential gradient when the reaction rate is high. This suggests a non-flamelet behaviour, which is due to interaction of reaction zones. The analysis of the conditional PDFs for the premixed case confirms the expected behaviour of scalar gradient in flamelet combustion. It has been shown that the LIF signals synthesised using 2D slices of DNS data also provide very similar insights. These results demonstrate that the so-called flameless combustion is not an idealised homogeneous reactive mixture but has common features of conventional combustion while containing distinctive characteristics. © 2013 The Combustion Institute.