4 resultados para metropolis
em Cambridge University Engineering Department Publications Database
Resumo:
Algorithms are presented for detection and tracking of multiple clusters of co-ordinated targets. Based on a Markov chain Monte Carlo sampling mechanization, the new algorithms maintain a discrete approximation of the filtering density of the clusters' state. The filters' tracking efficiency is enhanced by incorporating various sampling improvement strategies into the basic Metropolis-Hastings scheme. Thus, an evolutionary stage consisting of two primary steps is introduced: 1) producing a population of different chain realizations, and 2) exchanging genetic material between samples in this population. The performance of the resulting evolutionary filtering algorithms is demonstrated in two different settings. In the first, both group and target properties are estimated whereas in the second, which consists of a very large number of targets, only the clustering structure is maintained. © 2009 IFAC.
Resumo:
We present a novel filtering algorithm for tracking multiple clusters of coordinated objects. Based on a Markov chain Monte Carlo (MCMC) mechanism, the new algorithm propagates a discrete approximation of the underlying filtering density. A dynamic Gaussian mixture model is utilized for representing the time-varying clustering structure. This involves point process formulations of typical behavioral moves such as birth and death of clusters as well as merging and splitting. For handling complex, possibly large scale scenarios, the sampling efficiency of the basic MCMC scheme is enhanced via the use of a Metropolis within Gibbs particle refinement step. As the proposed methodology essentially involves random set representations, a new type of estimator, termed the probability hypothesis density surface (PHDS), is derived for computing point estimates. It is further proved that this estimator is optimal in the sense of the mean relative entropy. Finally, the algorithm's performance is assessed and demonstrated in both synthetic and realistic tracking scenarios. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a Bayesian probabilistic framework to assess soil properties and model uncertainty to better predict excavation-induced deformations using field deformation data. The potential correlations between deformations at different depths are accounted for in the likelihood function needed in the Bayesian approach. The proposed approach also accounts for inclinometer measurement errors. The posterior statistics of the unknown soil properties and the model parameters are computed using the Delayed Rejection (DR) method and the Adaptive Metropolis (AM) method. As an application, the proposed framework is used to assess the unknown soil properties of multiple soil layers using deformation data at different locations and for incremental excavation stages. The developed approach can be used for the design of optimal revisions for supported excavation systems. © 2010 ASCE.