32 resultados para metastable optical pumping He-3 Helium-3 polarizer
em Cambridge University Engineering Department Publications Database
Resumo:
This paper reports a detailed theoretical study of the dynamics of wavelength conversion using cross-gain and cross-phase modulation in semiconductor optical amplifiers (SOA's) involving a large signal, multisection rate equation model. Using this model, recently reported experimental results have been correctly predicted and the effects of electrical and optical pumping on the conversion speed, modulation index, and phase variation of the converted signal have been considered. The model predicts, in agreement with experimental data, that recovery rates as low as 12 ps are possible if signal and pump powers in excess of 14 dBm are used. It also indicates that conversion speeds up to 40 Gb/s may be achieved with less than 3 dB dynamic penalty. The employment of cross-phase modulation increases the speed allowing, for example, an improvement to 60 Gb/s with an excess loss penalty less than 1 dB.
Resumo:
We report the first measurement of two-photon absorption (TPA) and self-phase modulation in an InGaAsP/InP multi-quantum-well waveguide. The TPA coefficient, β2, was found to be 60±10 cm/GW at 1.55 μm. Despite operating at 200 nm from the band edge, self-phase modulation as high as 8±2 rad was observed for 30-ps optical pulses at 3.8-W peak input power. A theoretical calculation indicates that this enhanced phase modulation is primarily due to bandfilling in the quantum wells and the free-carrier plasma effect.
Resumo:
For the first time, lasers have been used to induce a fast all-optical nonresonant nonlinearity at wavelengths well beyond the band edge in a GaAs/GaAlAs multiquantum well waveguide. Using a Q-switched diode laser, which gave optical pulses of 3.5 ps duration and 7 W peak power, an intensity-dependent transmission was recorded that was consistent with the presence of two photon absorption in the waveguide. The measured two photon absorption coefficient was 11 ± 2cm/GW.
Resumo:
The cross-gain-saturation effect in SOAs, has been shown to enable robust high-speed wavelength conversion. Under strong electrical and optical pumping, conversion speeds in excess of 20 Gbit/s have been illustrated. However, the effect of chirp on transmission distance at such ultrahigh bit rates has not been studied theoretically in detail. This paper considers the chirp introduced on conversion, employing cross-gain saturation, and studies its dependence on amplifier drive current and signal power. It further shows how an increase in injected cw optical power can reduce chirp while improving conversion speed.
3 Gbit/s LED-based step index plastic optical fiber link using multilevel pulse amplitude modulation
Resumo:
Multilevel PAM is investigated for a LED-based SI-POF link. Using PAM-8, transmission at a record 3 Gbit/s is demonstrated for a maximum length of 25 m step index POF with offline post-receiver processing. © 2013 OSA.
3 Gbit/s LED-based step index plastic optical fiber link using multilevel pulse amplitude modulation
Resumo:
Multilevel PAM is investigated for a LED-based SI-POF link. Using PAM-8, transmission at a record 3 Gbit/s is demonstrated for a maximum length of 25 m step index POF with offline post-receiver processing. © 2013 OSA.
Resumo:
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is one of the most promising conducting polymers that can be used as transparent electrode or as buffer layer for organic electronic devices. However, when used as an electrode, its conductivity has to be optimized either by the addition of solvents or by post-deposition processing. In this work, we investigate the effect of the addition of the polar solvent dimethylsulfoxide (DMSO) to an aqueous PEDOT:PSS solution on its optical and electrical properties by the implementation of the Drude model for the analysis of the measured pseudo-dielectric function by Spectroscopic Ellipsometry from the near infrared to the visible-far ultraviolet spectral range. The results show that the addition of DMSO increases significantly the film conductivity, which reaches a maximum value at an optimum DMSO concentration as it has confirmed by experimentally measured conductivity values. The post-deposition thermal annealing has been found to have a smaller effect on the film conductivity. © 2013 Elsevier B.V.