17 resultados para medial extents
em Cambridge University Engineering Department Publications Database
Resumo:
Accurate and efficient computation of the nearest wall distance d (or level set) is important for many areas of computational science/engineering. Differential equation-based distance/ level set algorithms, such as the hyperbolic-natured Eikonal equation, have demonstrated valuable computational efficiency. Here, in the context, as an 'auxiliary' equation to the main flow equations, the Eikonal equation is solved efficiently with two different finite volume approaches (the cell vertex and cell-centered). Application of the distance solution is studied for various geometries. Moreover, a procedure using the differential field to obtain the medial axis transform (MAT) for different geometries is presented. The latter provides a skeleton representation of geometric models that has many useful analysis properties. As an alternative approach to the pure geometric methods (e.g. the Voronoi approach), the current d-MAT procedure bypasses many difficulties that are usually encountered by pure geometric methods, especially in three dimensional space. It is also shown that the d-MAT approach provides the potential to sculpt/control the MAT form for specialized solution purposes. Copyright © 2010 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
Accurate and efficient computation of the distance function d for a given domain is important for many areas of numerical modeling. Partial differential (e.g. HamiltonJacobi type) equation based distance function algorithms have desirable computational efficiency and accuracy. In this study, as an alternative, a Poisson equation based level set (distance function) is considered and solved using the meshless boundary element method (BEM). The application of this for shape topology analysis, including the medial axis for domain decomposition, geometric de-featuring and other aspects of numerical modeling is assessed. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
Humans have the arguably unique ability to understand the mental representations of others. For success in both competitive and cooperative interactions, however, this ability must be extended to include representations of others' belief about our intentions, their model about our belief about their intentions, and so on. We developed a "stag hunt" game in which human subjects interacted with a computerized agent using different degrees of sophistication (recursive inferences) and applied an ecologically valid computational model of dynamic belief inference. We show that rostral medial prefrontal (paracingulate) cortex, a brain region consistently identified in psychological tasks requiring mentalizing, has a specific role in encoding the uncertainty of inference about the other's strategy. In contrast, dorsolateral prefrontal cortex encodes the depth of recursion of the strategy being used, an index of executive sophistication. These findings reveal putative computational representations within prefrontal cortex regions, supporting the maintenance of cooperation in complex social decision making.
Resumo:
Human choices are remarkably susceptible to the manner in which options are presented. This so-called "framing effect" represents a striking violation of standard economic accounts of human rationality, although its underlying neurobiology is not understood. We found that the framing effect was specifically associated with amygdala activity, suggesting a key role for an emotional system in mediating decision biases. Moreover, across individuals, orbital and medial prefrontal cortex activity predicted a reduced susceptibility to the framing effect. This finding highlights the importance of incorporating emotional processes within models of human choice and suggests how the brain may modulate the effect of these biasing influences to approximate rationality.
Resumo:
Decision making in an uncertain environment poses a conflict between the opposing demands of gathering and exploiting information. In a classic illustration of this 'exploration-exploitation' dilemma, a gambler choosing between multiple slot machines balances the desire to select what seems, on the basis of accumulated experience, the richest option, against the desire to choose a less familiar option that might turn out more advantageous (and thereby provide information for improving future decisions). Far from representing idle curiosity, such exploration is often critical for organisms to discover how best to harvest resources such as food and water. In appetitive choice, substantial experimental evidence, underpinned by computational reinforcement learning (RL) theory, indicates that a dopaminergic, striatal and medial prefrontal network mediates learning to exploit. In contrast, although exploration has been well studied from both theoretical and ethological perspectives, its neural substrates are much less clear. Here we show, in a gambling task, that human subjects' choices can be characterized by a computationally well-regarded strategy for addressing the explore/exploit dilemma. Furthermore, using this characterization to classify decisions as exploratory or exploitative, we employ functional magnetic resonance imaging to show that the frontopolar cortex and intraparietal sulcus are preferentially active during exploratory decisions. In contrast, regions of striatum and ventromedial prefrontal cortex exhibit activity characteristic of an involvement in value-based exploitative decision making. The results suggest a model of action selection under uncertainty that involves switching between exploratory and exploitative behavioural modes, and provide a computationally precise characterization of the contribution of key decision-related brain systems to each of these functions.
Resumo:
The ability to volitionally regulate emotions helps to adapt behavior to changing environmental demands and can alleviate subjective distress. We show that a cognitive strategy of detachment attenuates subjective and physiological measures of anticipatory anxiety for pain and reduces reactivity to receipt of pain itself. Using functional magnetic resonance imaging, we locate the potential site and source of this modulation of anticipatory anxiety in the medial prefrontal/anterior cingulate and anterolateral prefrontal cortex, respectively.
Resumo:
The relationship between pain and cognitive function is of theoretical and clinical interest, exemplified by observations that attention-demanding activities reduce pain in chronically afflicted patients. Previous studies have concentrated on phasic pain, which bears little correspondence to clinical pain conditions. Indeed, phasic pain is often associated with differential or opposing effects to tonic pain in behavioral, lesion, and pharmacological studies. To address how cognitive engagement interacts with tonic pain, we assessed the influence of an attention-demanding cognitive task on pain-evoked neural responses in an experimental model of chronic pain, the capsaicin-induced heat hyperalgesia model. Using functional magnetic resonance imaging (fMRI), we show that activity in the orbitofrontal and medial prefrontal cortices, insula, and cerebellum correlates with the intensity of tonic pain. This pain-related activity in medial prefrontal cortex and cerebellum was modulated by the demand level of the cognitive task. Our findings highlight a role for these structures in the integration of motivational and cognitive functions associated with a physiological state of injury. Within the limitations of an experimental model of pain, we suggest that the findings are relevant to understanding both the neurobiology and pathophysiology of chronic pain and its amelioration by cognitive strategies.
Resumo:
A one-dimensional model for crevice HC post-flame oxidation is used to calculate and understand the effect of operating parameters and fuel type (propane and isooctane) on the extent of crevice hydrocarbon and the product distribution in the post flame environment. The calculations show that the main parameters controlling oxidation are: bulk burned gas temperatures, wall temperatures, turbulent diffusivity, and fuel oxidation rates. Calculated extents of oxidation agree well with experimental values, and the sensitivities to operating conditions (wall temperatures, equivalence ratio, fuel type) are reasonably well captured. Whereas the bulk gas temperatures largely determine the extent of oxidation, the hydrocarbon product distribution is not very much affected by the burned gas temperatures, but mostly by diffusion rates. Uncertainties in both turbulent diffusion rates as well as in mechanisms are an important factor limiting the predictive capabilities of the model. However, it seems well suited to sensitivity calculations about a baseline. Copyright © 1999 Society of Automotive Engineers, Inc.