14 resultados para matrix model

em Cambridge University Engineering Department Publications Database


Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes a hierarchical probabilistic model for ordinal matrix factorization. Unlike previous approaches, we model the ordinal nature of the data and take a principled approach to incorporating priors for the hidden variables. Two algorithms are presented for inference, one based on Gibbs sampling and one based on variational Bayes. Importantly, these algorithms may be implemented in the factorization of very large matrices with missing entries. The model is evaluated on a collaborative filtering task, where users have rated a collection of movies and the system is asked to predict their ratings for other movies. The Netflix data set is used for evaluation, which consists of around 100 million ratings. Using root mean-squared error (RMSE) as an evaluation metric, results show that the suggested model outperforms alternative factorization techniques. Results also show how Gibbs sampling outperforms variational Bayes on this task, despite the large number of ratings and model parameters. Matlab implementations of the proposed algorithms are available from cogsys.imm.dtu.dk/ordinalmatrixfactorization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental study of local orientations around whiskers in deformed metal matrix composites has been used to determine the strain gradients existing in the material following tensile deformation. These strain fields have been represented as arrays of geometrically necessary dislocations, and the material flow stress predicted using a standard dislocation hardening model. Whilst the correlation between this and the measured flow stress is reasonable, the experimentally determined strain gradients are lower by a factor of 5-10 than values obtained in previous estimates made using continuum plasticity finite element models. The local orientations around the whiskers contain a large amount of detailed information about the strain patterns in the material, and a novel approach is made to representing some of this information and to correlating it with microstructural observations. © 1998 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statistical dependencies among wavelet coefficients are commonly represented by graphical models such as hidden Markov trees (HMTs). However, in linear inverse problems such as deconvolution, tomography, and compressed sensing, the presence of a sensing or observation matrix produces a linear mixing of the simple Markovian dependency structure. This leads to reconstruction problems that are non-convex optimizations. Past work has dealt with this issue by resorting to greedy or suboptimal iterative reconstruction methods. In this paper, we propose new modeling approaches based on group-sparsity penalties that leads to convex optimizations that can be solved exactly and efficiently. We show that the methods we develop perform significantly better in de-convolution and compressed sensing applications, while being as computationally efficient as standard coefficient-wise approaches such as lasso. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone is a complex material with a hierarchical multi-scale organization from the molecule to the organ scale. The genetic bone disease, osteogenesis imperfecta, is primarily caused by mutations in the collagen type I genes, resulting in bone fragility. Because the basis of the disease is molecular with ramifications at the whole bone level, it provides a platform for investigating the relationship between structure, composition, and mechanics throughout the hierarchy. Prior studies have individually shown that OI leads to: 1. increased bone mineralization, 2. decreased elastic modulus, and 3. smaller apatite crystal size. However, these have not been studied together and the mechanism for how mineral structure influences tissue mechanics has not been identified. This lack of understanding inhibits the development of more accurate models and therapies. To address this research gap, we used a mouse model of the disease (oim) to measure these outcomes together in order to propose an underlying mechanism for the changes in properties. Our main finding was that despite increased mineralization, oim bones have lower stiffness that may result from the poorly organized mineral matrix with significantly smaller, highly packed and disoriented apatite crystals. Using a composite framework, we interpret the lower oim bone matrix elasticity observed as the result of a change in the aspect ratio of apatite crystals and a disruption of the crystal connectivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix anisotropy is important for long term in vivo functionality. However, it is not fully understood how to guide matrix anisotropy in vitro. Experiments suggest actin-mediated cell traction contributes. Although F-actin in 2D displays a stretch-avoidance response, 3D data are lacking. We questioned how cyclic stretch influences F-actin and collagen orientation in 3D. Small-scale cell-populated fibrous tissues were statically constrained and/or cyclically stretched with or without biochemical agents. A rectangular array of silicone posts attached to flexible membranes constrained a mixture of cells, collagen I and matrigel. F-actin orientation was quantified using fiber-tracking software, fitted using a bi-model distribution function. F-actin was biaxially distributed with static constraint. Surprisingly, uniaxial cyclic stretch, only induced a strong stretch-avoidance response (alignment perpendicular to stretching) at tissue surfaces and not in the core. Surface alignment was absent when a ROCK-inhibitor was added, but also when tissues were only statically constrained. Stretch-avoidance was also observed in the tissue core upon MMP1-induced matrix perturbation. Further, a strong stretch-avoidance response was obtained for F-actin and collagen, for immediate cyclic stretching, i.e. stretching before polymerization of the collagen. Results suggest that F-actin stress-fibers avoid cyclic stretch in 3D, unless collagen contact guidance dictates otherwise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix anisotropy is important for long term in vivo functionality. However, it is not fully understood how to guide matrix anisotropy in vitro. Experiments suggest actin-mediated cell traction contributes. Although F-actin in 2D displays a stretch-avoidance response, 3D data are lacking. We questioned how cyclic stretch influences F-actin and collagen orientation in 3D. Small-scale cell-populated fibrous tissues were statically constrained and/or cyclically stretched with or without biochemical agents. A rectangular array of silicone posts attached to flexible membranes constrained a mixture of cells, collagen I and matrigel. F-actin orientation was quantified using fiber-tracking software, fitted using a bi-model distribution function. F-actin was biaxially distributed with static constraint. Surprisingly, uniaxial cyclic stretch, only induced a strong stretch-avoidance response (alignment perpendicular to stretching) at tissue surfaces and not in the core. Surface alignment was absent when a ROCK-inhibitor was added, but also when tissues were only statically constrained. Stretch-avoidance was also observed in the tissue core upon MMP1-induced matrix perturbation. Further, a strong stretch-avoidance response was obtained for F-actin and collagen, for immediate cyclic stretching, i.e. stretching before polymerization of the collagen. Results suggest that F-actin stress-fibers avoid cyclic stretch in 3D, unless collagen contact guidance dictates otherwise. © 2012 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Engineering changes (ECs) are raised throughout the lifecycle of engineering products. A single change to one component produces knock-on effects on others necessitating additional changes. This change propagation significantly affects the development time and cost and determines the product's success. Predicting and managing such ECs is, thus, essential to companies. Some prediction tools model change propagation by algorithms, whereof a subgroup is numerical. Current numerical change propagation algorithms either do not account for the exclusion of cyclic propagation paths or are based on exhaustive searching methods. This paper presents a new matrix-calculation-based algorithm which can be applied directly to a numerical product model to analyze change propagation and support change prediction. The algorithm applies matrix multiplications on mutations of a given design structure matrix accounting for the exclusion of self-dependences and cyclic propagation paths and delivers the same results as the exhaustive search-based Trail Counting algorithm. Despite its factorial time complexity, the algorithm proves advantageous because of its straightforward matrix-based calculations which avoid exhaustive searching. Thereby, the algorithm can be implemented in established numerical programs such as Microsoft Excel which promise a wider application of the tools within and across companies along with better familiarity, usability, practicality, security, and robustness. © 1988-2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some amount of differential settlement occurs even in the most uniform soil deposit, but it is extremely difficult to estimate because of the natural heterogeneity of the soil. The compression response of the soil and its variability must be characterised in order to estimate the probability of the differential settlement exceeding a certain threshold value. The work presented in this paper introduces a probabilistic framework to address this issue in a rigorous manner, while preserving the format of a typical geotechnical settlement analysis. In order to avoid dealing with different approaches for each category of soil, a simplified unified compression model is used to characterise the nonlinear compression behavior of soils of varying gradation through a single constitutive law. The Bayesian updating rule is used to incorporate information from three different laboratory datasets in the computation of the statistics (estimates of the means and covariance matrix) of the compression model parameters, as well as of the uncertainty inherent in the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peripheral nerve damage is a problem encountered after trauma and during surgery and the development of synthetic polymer conduits may offer a promising alternative to autografts. In order to improve the performance of the polymer to be used for nerve conduits, poly-ε-caprolactone (PCL) films were chemically functionalized with RGD moieties, using a chemical reaction previously developed. In vitro cultures of dissociated dorsal root ganglion (DRG) neurons provide a valid model to study different factors affecting axonal growth. In this work, DRG neurons were cultured on RGD-functionalized PCL films. Adult adipose-derived stem cells differentiated to Schwann cells (dASCs) were initially cultured on the functionalized PCL films, resulting in improved attachment and proliferation. dASCs were also co-cultured with DRG neurons on treated and untreated PCL to assess stimulation by dASCs on neurite outgrowth. Neuron response was generally poor on untreated PCL films, but long neurites were observed in the presence of dASCs or RGD moieties. A combination of the two factors enhanced even further neurite outgrowth, acting synergistically. Finally, in order to better understand the extracellular matrix (ECM)-cell interaction, a β1 integrin blocking experiment was carried out. Neurite outgrowth was not affected by the specific antibody blocking, showing that β1 integrin function can be compensated by other molecules present on the cell membrane. Copyright © 2013 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The classification of a concrete mixture as self-compacting (SCC) is performed by a series of empirical characterization tests that have been designed to assess not only the flowability of the mixture but also its segregation resistance and filling ability. The objective of the present work is to correlate the rheological parameters of SCC matrix, yield stress and plastic viscosity, to slump flow measurements. The focus of the slump flow test investigation was centered on the fully yielded flow regime and an empirical model relating the yield stress to material and flow parameters is proposed. Our experimental data revealed that the time for a spread of 500 mm which is used in engineering practice as reference for measurement parameters, is an arbitrary choice. Our findings indicate that the non-dimensional final spread is linearly related to the non-dimensional yield-stress. Finally, there are strong indications that the non-dimensional viscosity of the mixture is associated with the non-dimensional final spread as well as the stopping time of the slump flow; this experimental data set suggests an exponential decay of the final spread and stopping time with viscosity. © Appl. Rheol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by the problem of learning a linear regression model whose parameter is a large fixed-rank non-symmetric matrix, we consider the optimization of a smooth cost function defined on the set of fixed-rank matrices. We adopt the geometric framework of optimization on Riemannian quotient manifolds. We study the underlying geometries of several well-known fixed-rank matrix factorizations and then exploit the Riemannian quotient geometry of the search space in the design of a class of gradient descent and trust-region algorithms. The proposed algorithms generalize our previous results on fixed-rank symmetric positive semidefinite matrices, apply to a broad range of applications, scale to high-dimensional problems, and confer a geometric basis to recent contributions on the learning of fixed-rank non-symmetric matrices. We make connections with existing algorithms in the context of low-rank matrix completion and discuss the usefulness of the proposed framework. Numerical experiments suggest that the proposed algorithms compete with state-of-the-art algorithms and that manifold optimization offers an effective and versatile framework for the design of machine learning algorithms that learn a fixed-rank matrix. © 2013 Springer-Verlag Berlin Heidelberg.