61 resultados para mathematical behavior

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study investigated the relationship between statistics anxiety, individual characteristics (e.g., trait anxiety and learning strategies), and academic performance. Students enrolled in a statistics course in psychology (N=147) filled in a questionnaire on statistics anxiety, trait anxiety, interest in statistics, mathematical selfconcept, learning strategies, and procrastination. Additionally, their performance in the examination was recorded. The structural equation model showed that statistics anxiety held a crucial role as the strongest direct predictor of performance. Students with higher statistics anxiety achieved less in the examination and showed higher procrastination scores. Statistics anxiety was related indirectly to spending less effort and time on learning. Trait anxiety was related positively to statistics anxiety and, counterintuitively, to academic performance. This result can be explained by the heterogeneity of the measure of trait anxiety. The part of trait anxiety that is unrelated to the specific part of statistics anxiety correlated positively with performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Au nanoparticles stabilized by poly(methyl methacrylate) (PMMA) were used as a catalyst to grow vertically aligned ZnO nanowires (NWs). The density of ZnO NWs with very uniform diameter was controlled by changing the concentration of Au-PMMA nanoparticles (NPs). The density was in direct proportion to the concentration of Au-PMMA NPs. Furthermore, the growth process of ZnO NWs using Au-PMMA NPs was systematically investigated through comparison with that using Au thin film as a catalyst. Au-PMMA NPs induced polyhedral-shaped bases of ZnO NWs separated from each other, while Au thin film formed a continuous network of bases of ZnO NWs. This approach provides a facile and cost-effective catalyst density control method, allowing us to grow high-quality vertically aligned ZnO NWs suitable for many viable applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variable selection for regression is a classical statistical problem, motivated by concerns that too large a number of covariates may bring about overfitting and unnecessarily high measurement costs. Novel difficulties arise in streaming contexts, where the correlation structure of the process may be drifting, in which case it must be constantly tracked so that selections may be revised accordingly. A particularly interesting phenomenon is that non-selected covariates become missing variables, inducing bias on subsequent decisions. This raises an intricate exploration-exploitation tradeoff, whose dependence on the covariance tracking algorithm and the choice of variable selection scheme is too complex to be dealt with analytically. We hence capitalise on the strength of simulations to explore this problem, taking the opportunity to tackle the difficult task of simulating dynamic correlation structures. © 2008 IEEE.