8 resultados para maintenance of the genome

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA methylation has two essential roles in plants and animals - defending the genome against transposons and regulating gene expression. Recent experiments in Arabidopsis thaliana have begun to address crucial questions about how DNA methylation is established and maintained. One cardinal insight has been the discovery that DNA methylation can be guided by small RNAs produced through RNA-interference pathways. Plants and mammals use a similar suite of DNA methyltransferases to propagate DNA methylation, but plants have also developed a glycosylase-based mechanism for removing DNA methylation, and there are hints that similar processes function in other organisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plants use siRNAs to target cytosine DNA methylation to both symmetrical CG and nonsymmetrical (CHG and CHH) sequence contexts. DNA methylation and siRNA clusters most frequently overlap with transposons in the Arabidopsis thaliana genome. However, a significant number of protein-coding genes also show promoter DNA methylation, and this can be used to silence their expression. Loss of the majority of non-CG DNA methylation in drm1 drm2 cmt3 triple mutants leads to developmental phenotypes. We identified the gene responsible for these phenotypes as SUPPRESSOR OF drm1 drm2 cmt3 (SDC), which encodes an F-box protein and possesses seven promoter tandem repeats. The SDC repeats show a unique silencing requirement for non-CG DNA methylation directed redundantly by histone methylation and siRNAs, and display spreading of siRNAs and methylation beyond the repeated region. In addition to revealing the complexity of DNA methylation control in A. thaliana, SDC has important implications for how plant genomes utilize gene silencing to repress endogenous genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thus far most studies of operational energy use of buildings fail to take a longitudinal view, or in other words, do not take into account how operational energy use changes during the lifetime of a building. However, such a view is important when predicting the impact of climate change, or for long term energy accounting purposes. This article presents an approach to deliver a longitudinal prediction of operational energy use. The work is based on the review of deterioration in thermal performance, building maintenance effects, and future climate change. The key issues are to estimate the service life expectancy and thermal performance degradation of building components while building maintenance and changing weather conditions are considered at the same time. Two examples are presented to demonstrate the application of the deterministic and stochastic approaches, respectively. The work concludes that longitudinal prediction of operational energy use is feasible, but the prediction will depend largely on the availability of extensive and reliable monitoring data. This premise is not met in most current buildings. © 2011 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water is essential not only to maintain the livelihoods of human beings but also to sustain ecosystems. Over the last few decades several global assessments have reviewed current and future uses of water, and have offered potential solutions to a possible water crisis. However, these have tended to focus on water supply rather than on the range of demands for all water services (including those of ecosystems). In this paper, a holistic global view of water resources and the services they provide is presented, using Sankey diagrams as a visualisation tool. These diagrams provide a valuable addition to the spatial maps of other global assessments, as they track the sources, uses, services and sinks of water resources. They facilitate comparison of different water services, and highlight trade-offs amongst them. For example, they reveal how increasing the supply of water resources to one service (crop production) can generate a reduction in provision of other water services (e.g., to ecosystem maintenance). The potential impacts of efficiency improvements in the use of water are also highlighted; for example, reduction in soil evaporation from crop production through better farming practices, or the results of improved treatment and re-use of return flows leading to reduction of delivery to final sinks. This paper also outlines the measures needed to ensure sustainable water resource use and supply for multiple competing services in the future, and emphasises that integrated management of land and water resources is essential to achieve this goal. © 2013 Elsevier Ltd.