136 resultados para luminescence spectroscopy
em Cambridge University Engineering Department Publications Database
Resumo:
In this paper we demonstrate that the structural and optical properties of Si nanoclusters (Si ncs) formed by thermal annealing of SiOx films prepared by plasma enhanced chemical vapor deposition (PECVD) and magnetron sputtering are very different. In fact, at a fixed Si excess and annealing temperature, photoluminescence (PL) spectra of sputtered samples are redshifted with respect to PECVD samples, denoting a larger Si ncs size. In addition, PL intensity reaches a maximum in sputtered films at annealing temperatures much lower than those needed in PECVD films. These data are correlated with structural properties obtained by energy filtered transmission electron microscopy and electron energy loss spectroscopy. It is shown that in PECVD films only around 30% of the Si excess agglomerates in clusters while an almost complete agglomeration occurs in sputtered films. These data are explained on the basis of the different initial structural properties of the as-deposited films that become crucial for the subsequent evolution. © 2008 American Institute of Physics.
Resumo:
Characteristics of the Raman spectrum from carbon onions have been identified in terms of the position of the G peak and appearance of the transverse optic phonon peaks. Five new peaks were observed in the low wavenumber region, at about 1100, 861, 700, 450 and 250 cm(-1). The origins of these peaks are discussed in terms of the phonon density of states (PDOS) and phonon dispersion curves of graphite. The curvature of the graphene planes is invoked to explain the relaxation of the Raman selection rules and the appearance of the new peaks. The Raman spectrum of carbon onions is compared with that of highly oriented pyrolytic graphite (HOPG). The strain of graphene planes due to curvature has been estimated analytically and is used to account for the downward shift of the G peak. (C) 2003 Elsevier Science B.V. All rights reserved.
Electrical and optical spectroscopy for quantitative screening of hepatic steatosis in donor livers.
Resumo:
Macro-steatosis in deceased donor livers is increasingly prevalent and is associated with poor or non-function of the liver upon reperfusion. Current assessment of the extent of steatosis depends upon the macroscopic assessment of the liver by the surgeon and histological examination, if available. In this paper we demonstrate electrical and optical spectroscopy techniques which quantitatively characterize fatty infiltration in liver tissue. Optical spectroscopy showed a correlation coefficient of 0.85 in humans when referenced to clinical hematoxylin and eosin (H&E) sections in 20 human samples. With further development, an optical probe may provide a comprehensive measure of steatosis across the liver at the time of procurement.
Resumo:
In the present study, we report the hydrogen content estimation of the hydrogenated amorphous carbon (a-C:H) films using visible Raman spectroscopy in a fast and nondestructive way. Hydrogenated diamondlike carbon films were deposited by the plasma enhanced chemical vapor deposition, plasma beam source, and integrated distributed electron cyclotron resonance techniques. Methane and acetylene were used as source gases resulting in different hydrogen content and sp2/sp3 fraction. Ultraviolet-visible (UV-Vis) spectroscopic ellipsometry (1.5-5 eV) as well as UV-Vis spectroscopy were provided with the optical band gap (Tauc gap). The sp2/sp3 fraction and the hydrogen content were independently estimated by electron energy loss spectroscopy and elastic recoil detection analysis-Rutherford back scattering, respectively. The Raman spectra that were acquired in the visible region using the 488 nm line shows the superposition of Raman features on a photoluminescence (PL) background. The direct relationship of the sp2 content and the optical band gap has been confirmed. The difference in the PL background for samples of the same optical band gap (sp2 content) and different hydrogen content was demonstrated and an empirical relationship between the visible Raman spectra PL background slope and the corresponding hydrogen content was extracted. © 2004 American Institute of Physics.
Resumo:
We measure the effects of phonon confinement on the Raman spectra of silicon nanowires. We show how previous spectra were inconsistent with phonon confinement, but were due to intense local heating caused by the laser. This is peculiar to nanostructures, and would require orders of magnitude more power in bulk Si. By working at very low laser powers, we identify the contribution of pure confinement typical of quantum wires.