6 resultados para loosely coupled networks

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of fluid-structure interaction simulations of an aerodynamic tension-cone supersonic decelerator prototype intended for large mass payload deployment in planetary explorations are discussed. The fluid-structure interaction computations combine large deformation analysis of thin shells with large-eddy simulation of compressible turbulent flows using a loosely coupled approach to enable quantification of the dynamics of the vehicle. The simulation results are compared with experiments carried out at the NASA Glenn Research Center. Reasonably good agreement between the simulations and the experiment is observed throughout a deflation cycle. The simulations help to illuminate the details of the dynamic progressive buckling of the tension-cone decelerator that ultimately results in the collapse of the structure as the inflation pressure is decreased. Furthermore, the tension-cone decelerator exhibits a transient oscillatory behavior under impulsive loading that ultimately dies out. The frequency of these oscillations was determined to be related to the acoustic time scale in the compressed subsonic region between the bow shock and the structure. As shown, when the natural frequency of the structure and the frequency of the compressed subsonic region approximately match, the decelerator exhibits relatively large nonaxisymetric oscillations. The observed response appears to be a fluid-structure interaction resonance resulting from an acoustic chamber (pistonlike) mode exciting the structure. Copyright © 2013 by Christopher Porter, R. Mark Rennie, Eric J. Jumper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper establishes a global contraction property for networks of phase-coupled oscillators characterized by a monotone coupling function. The contraction measure is a total variation distance. The contraction property determines the asymptotic behavior of the network, which is either finite-time synchronization or asymptotic convergence to a splay state. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper uses dissipativity theory to provide the system-theoretic description of a basic oscillation mechanism. Elementary input-output tools are then used to prove the existence and stability of limit cycles in these "oscillators". The main benefit of the proposed approach is that it is well suited for the analysis and design of interconnections, thus providing a valuable mathematical tool for the study of networks of coupled oscillators.