133 resultados para load reduction
em Cambridge University Engineering Department Publications Database
Resumo:
Pile jacking is a common installation method for displacement piles due to the low noise and vibration involved in the installation procedure. Problems may occur when modelling jacked piles in the centrifuge, especially for friction piles, due to scaling effects which can be minimised, provided that the pile diameter is greater than fifty times the mean grain size. A series of centrifuge tests of jacked piles was performed in both dry and saturated fine sand. Piles were installed using three different methods. The effect of the installation method on the head load required is assessed. The influence of the normalised roughness was also tested by testing one rough and one smooth pile. Finally, cyclic shearing at constant depth was performed to establish the shaft load reduction due to friction fatigue. © 2014 Taylor & Francis Group.
Resumo:
Statistical model-based methods are presented for the reconstruction of autocorrelated signals in impulsive plus continuous noise environments. Signals are modelled as autoregressive and noise sources as discrete and continuous mixtures of Gaussians, allowing for robustness in highly impulsive and non-Gaussian environments. Markov Chain Monte Carlo methods are used for reconstruction of the corrupted waveforms within a Bayesian probabilistic framework and results are presented for contaminated voice and audio signals.
Resumo:
A comprehensive study of the stress release and structural changes caused by postdeposition thermal annealing of tetrahedral amorphous carbon (ta-C) on Si has been carried out. Complete stress relief occurs at 600-700°C and is accompanied by minimal structural modifications, as indicated by electron energy loss spectroscopy, Raman spectroscopy, and optical gap measurements. Further annealing in vacuum converts sp3 sites to sp2 with a drastic change occurring after 1100°C. The field emitting behavior is substantially retained up to the complete stress relief, confirming that ta-C is a robust emitting material. © 1999 American Institute of Physics.
Resumo:
A full-scale experimental study on the structural performance of load-bearing wall panels made of cold-formed steel frames and boards is presented. Six different types of C-channel stud, a total of 20 panels with one middle stud and 10 panels with two middle studs were tested under vertical compression until failure. For panels, the main variables considered are screw spacing (300 mm, 400 mm, or 600 mm) in the middle stud, board type (oriented strand board - OSB, cement particle board - CPB, or calcium silicate board - CSB), board number (no sheathing, one-side sheathing, or two-side sheathing), and loading type (1, 3, or 4-point loading). The measured load capacity of studs and panels agrees well with analytical prediction. Due to the restraint by rivet connections between stud and track, the effective length factor for the middle stud and the side stud in a frame (unsheathed panel) is reduced to 0.90 and 0.84, respectively. The load carrying capacity of a stud increases significantly whenever one- or two-side sheathing is used, although the latter is significantly more effective. It is also dependent upon the type of board used. Whereas panels with either OSB or CPB boards have nearly identical load carrying capacity, panels with CSB boards are considerably weaker. Screw spacing affects the load carrying capacity of a stud. When the screw spacing on the middle stud in panels with one-side sheathing is reduced from 600 mm to 300 mm, its load carrying capacity increases by 14.5 %, 20.6% and 94.2% for OSB, CPB and CSB, respectively.