62 resultados para load balancing

em Cambridge University Engineering Department Publications Database


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generally, adjustment of gravity equilibrator to a new payload requires energy, e.g. to increase the pre-load of the balancing spring. A novel way of energy-free adjustment of gravity equilibrators is possible by introducing the concept of a storage spring. The storage spring supplies or stores the energy necessary to adjust the balancer spring of the gravity equilibrator. In essence the storage spring mechanism maintains a constant potential energy within the spring mechanism; energy is exchanged between the storage and balancer spring when needed. Various conceptual designs using both zero-free-length springs and regular extension springs are proposed. Two models were manufactured demonstrating the practical embodiments and functionality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A full-scale experimental study on the structural performance of load-bearing wall panels made of cold-formed steel frames and boards is presented. Six different types of C-channel stud, a total of 20 panels with one middle stud and 10 panels with two middle studs were tested under vertical compression until failure. For panels, the main variables considered are screw spacing (300 mm, 400 mm, or 600 mm) in the middle stud, board type (oriented strand board - OSB, cement particle board - CPB, or calcium silicate board - CSB), board number (no sheathing, one-side sheathing, or two-side sheathing), and loading type (1, 3, or 4-point loading). The measured load capacity of studs and panels agrees well with analytical prediction. Due to the restraint by rivet connections between stud and track, the effective length factor for the middle stud and the side stud in a frame (unsheathed panel) is reduced to 0.90 and 0.84, respectively. The load carrying capacity of a stud increases significantly whenever one- or two-side sheathing is used, although the latter is significantly more effective. It is also dependent upon the type of board used. Whereas panels with either OSB or CPB boards have nearly identical load carrying capacity, panels with CSB boards are considerably weaker. Screw spacing affects the load carrying capacity of a stud. When the screw spacing on the middle stud in panels with one-side sheathing is reduced from 600 mm to 300 mm, its load carrying capacity increases by 14.5 %, 20.6% and 94.2% for OSB, CPB and CSB, respectively.