139 resultados para light flux
em Cambridge University Engineering Department Publications Database
Resumo:
Circadian oscillators provide rhythmic temporal cues for a range of biological processes in plants and animals, enabling anticipation of the day/night cycle and enhancing fitness-associated traits. We have used engineering models to understand the control principles of a plant's response to seasonal variation. We show that the seasonal changes in the timing of circadian outputs require light regulation via feed-forward loops, combining rapid light-signaling pathways with entrained circadian oscillators. Linear time-invariant models of circadian rhythms were computed for 3,503 circadian-regulated genes and for the concentration of cytosolic-free calcium to quantify the magnitude and timing of regulation by circadian oscillators and light-signaling pathways. Bioinformatic and experimental analysis show that rapid light-induced regulation of circadian outputs is associated with seasonal rephasing of the output rhythm. We identify that external coincidence is required for rephasing of multiple output rhythms, and is therefore important in general phase control in addition to specific photoperiod-dependent processes such as flowering and hypocotyl elongation. Our findings uncover a fundamental design principle of circadian regulation, and identify the importance of rapid light-signaling pathways in temporal control.
Resumo:
An attempt has been made to prepare a YBa2Cu3O 7-δ (YBCO) thin film doped with ferromagnetic CoFe 2O4. Transmission electron microscopy of the resultant samples shows, however, that Y(Fe, Co)O3 forms as a nanoparticulate dispersion throughout the film in preference to CoFe2O4, leaving the YBCO yttrium deficient. As a consequence, the superconducting properties of the sample are poor, with a self-field critical current density of just 0.25 MA cm-2. Magnetic measurements indicate however that the Y(Fe, Co)O3 content, together with any other residual phases, is also ferromagnetic, and some interesting features are present in the in-field critical current behaviour, including a reduced dependence on applied field and a strong c-axis peak in the angular dependence. The work points the way towards future attempts utilising YFeO3 as an effective ferromagnetic pinning additive for YBCO. © 2009 Elsevier B.V. All rights reserved.
Resumo:
The optical efficiency of GaN-based multiple quantum well (MQW) and light emitting diode (LED) structures grown on Si(111) substrates by metal-organic vapor phase epitaxy was measured and compared with equivalent structures on sapphire. The crystalline quality of the LED structures was comprehensively characterized using x-ray diffraction, atomic force microscopy, and plan-view transmission electron microscopy. A room temperature photoluminescence (PL) internal quantum efficiency (IQE) as high as 58% has been achieved in an InGaN/GaN MQW on Si, emitting at 460 nm. This is the highest reported PL-IQE of a c-plane GaN-based MQW on Si, and the radiative efficiency of this sample compares well with similar structures grown on sapphire. Processed LED devices on Si also show good electroluminescence (EL) performance, including a forward bias voltage of ∼3.5 V at 20 mA and a light output power of 1 mW at 45 mA from a 500 ×500 μm2 planar device without the use of any additional techniques to enhance the output coupling. The extraction efficiency of the LED devices was calculated, and the EL-IQE was then estimated to have a maximum value of 33% at a current density of 4 A cm-2, dropping to 30% at a current density of 40 A cm-2 for a planar LED device on Si emitting at 455 nm. The EL-IQE was clearly observed to increase as the structural quality of the material increased for devices on both sapphire and Si substrates. © 2011 American Institute of Physics.
Resumo:
Increasing the field of view of a holographic display while maintaining adequate image size is a difficult task. To address this problem, we designed a system that tessellates several sub-holograms into one large hologram at the output. The sub-holograms we generate is similar to a kinoform but without the paraxial approximation during computation. The sub-holograms are loaded onto a single spatial light modulator consecutively and relayed to the appropriate position at the output through a combination of optics and scanning reconstruction light. We will review the method of computer generated hologram and describe the working principles of our system. Results from our proof-of-concept system are shown to have an improved field of view and reconstructed image size. ©2009 IEEE.
Resumo:
Enhanced piezoresponse force microscopy was used to study flux closure vortexlike structures of 90° ferroelastic domains at the nanoscale in thin ferroelectric lead zirconium titanate (PZT) films. Using an external electric field, a vortexlike structure was induced far away from a grain boundary, indicating that physical edges are not necessary for nucleation contrary to previous suggestions. We demonstrate two different configurations of vortexlike structures, one of which has not been observed before. The stability of these structures is found to be size dependent, supporting previous predictions. © 2010 The American Physical Society.
Resumo:
Electrical bias and light stressing followed by natural recovery of amorphous hafnium-indium-zinc-oxide (HIZO) thin film transistors with a silicon oxide/nitride dielectric stack reveals defect density changes, charge trapping and persistent photoconductivity (PPC). In the absence of light, the polarity of bias stress controls the magnitude and direction of the threshold voltage shift (Δ VT), while under light stress, VT consistently shifts negatively. In all cases, there was no significant change in field-effect mobility. Light stress gives rise to a PPC with wavelength-dependent recovery on time scale of days. We observe that the PPC becomes more pronounced at shorter wavelengths. © 2010 American Institute of Physics.
Resumo:
This paper proposes an analytical approach that is generalized for the design of various types of electric machines based on a physical magnetic circuit model. Conventional approaches have been used to predict the behavior of electric machines but have limitations in accurate flux saturation analysis and hence machine dimensioning at the initial design stage. In particular, magnetic saturation is generally ignored or compensated by correction factors in simplified models since it is difficult to determine the flux in each stator tooth for machines with any slot-pole combinations. In this paper, the flux produced by stator winding currents can be calculated accurately and rapidly for each stator tooth using the developed model, taking saturation into account. This aids machine dimensioning without the need for a computationally expensive finite element analysis (FEA). A 48-slot machine operated in induction and doubly-fed modes is used to demonstrate the proposed model. FEA is employed for verification.