4 resultados para life review

em Cambridge University Engineering Department Publications Database


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Biopolymers are generally considered an eco-friendly alternative to petrochemical polymers due to the renewable feedstock used to produce them and their biodegradability. However, the farming practices used to grow these feedstocks often carry significant environmental burdens, and the production energy can be higher than for petrochemical polymers. Life cycle assessments (LCAs) are available in the literature, which make comparisons between biopolymers and various petrochemical polymers, however the results can be very disparate. This review has therefore been undertaken, focusing on three biodegradable biopolymers, poly(lactic acid) (PLA), poly(hydroxyalkanoates) (PHAs), and starch-based polymers, in an attempt to determine the environmental impact of each in comparison to petrochemical polymers. Reasons are explored for the discrepancies between these published LCAs. The majority of studies focused only on the consumption of non-renewable energy and global warming potential and often found these biopolymers to be superior to petrochemically derived polymers. In contrast, studies which considered other environmental impact categories as well as those which were regional or product specific often found that this conclusion could not be drawn. Despite some unfavorable results for these biopolymers, the immature nature of these technologies needs to be taken into account as future optimization and improvements in process efficiencies are expected. © 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the Climate Change Act of 2008 the UK Government pledged to reduce carbon emissions by 80% by 2050. As one step towards this, regulations are being introduced requiring all new buildings to be ‘zero carbon’ by 2019. These are defined as buildings which emit net zero carbon during their operational lifetime. However, in order to meet the 80% target it is necessary to reduce the carbon emitted during the whole life-cycle of buildings, including that emitted during the processes of construction. These elements make up the ‘embodied carbon’ of the building. While there are no regulations yet in place to restrict embodied carbon, a number of different approaches have been made. There are several existing databases of embodied carbon and embodied energy. Most provide data for the material extraction and manufacturing only, the ‘cradle to factory gate’ phase. In addition to the databases, various software tools have been developed to calculate embodied energy and carbon of individual buildings. A third source of data comes from the research literature, in which individual life cycle analyses of buildings are reported. This paper provides a comprehensive review, comparing and assessing data sources, boundaries and methodologies. The paper concludes that the wide variations in these aspects produce incomparable results. It highlights the areas where existing data is reliable, and where new data and more precise methods are needed. This comprehensive review will guide the future development of a consistent and transparent database and software tool to calculate the embodied energy and carbon of buildings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Engineering change is a significant part of any product development programme. Changes can arise at many points throughout the product life-cycle, resulting in rework which can ripple through different stages of the design process. Managing change processes is thus a critical aspect of any design project, especially in complex design. Through a literature review, this paper shows the diversity of information models used by different change management methods proposed in the literature. A classification framework for organising these change management approaches is presented. The review shows an increase in the number of cross-domain models proposed to help manage changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the Climate Change Act of 2008 the UK Government pledged to reduce carbon emissions by 80% by 2050. As one step towards this, regulations are being introduced requiring all new buildings to be ‘zero carbon’ by 2019. These are defined as buildingswhichemitnetzerocarbonduringtheiroperationallifetime.However,inordertomeetthe80%targetitisnecessary to reduce the carbon emitted during the whole life-cycle of buildings, including that emitted during the processes of construction. These elements make up the ‘embodied carbon’ of the building. While there are no regulations yet in place to restrictembodiedcarbon,anumberofdifferentapproacheshavebeenmade.Thereareseveralexistingdatabasesofembodied carbonandembodiedenergy.Mostprovidedataforthematerialextractionandmanufacturingonly,the‘cradletofactorygate’ phase. In addition to the databases, various software tools have been developed to calculate embodied energy and carbon of individual buildings. A third source of data comes from the research literature, in which individual life cycle analyses of buildings are reported. This paper provides a comprehensive review, comparing and assessing data sources, boundaries and methodologies. The paper concludes that the wide variations in these aspects produce incomparable results. It highlights the areas where existing data is reliable, and where new data and more precise methods are needed. This comprehensive review will guide the future development of a consistent and transparent database and software tool to calculate the embodied energy and carbon of buildings.