30 resultados para life cycle assessment environmental indicator

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Life cycle assessment has been used to investigate the environmental and economic sustainability of a potential operation in the UK in which bioethanol is produced from the hydrolysis and subsequent fermentation of coppice willow. If the willow were grown on idle arable land in the UK, or, indeed, in Eastern Europe and imported as wood chips into the UK, it was found that savings of greenhouse gas emissions of 70-90%, when compared to fossil-derived gasoline on an energy basis, would be possible. The process would be energetically self-sufficient, as the co-products, e.g. lignin and unfermented sugars, could be used to produce the process heat and electricity, with surplus electricity being exported to the National Grid. Despite the environmental benefits, the economic viability is doubtful at present. However, the cost of production could be reduced significantly if the willow were altered by breeding to improve its suitability for hydrolysis and fermentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biofuels are increasingly promoted worldwide as a means for reducing greenhouse gas (GHG) emissions from transport. However, current regulatory frameworks and most academic life cycle analyses adopt a deterministic approach in determining the GHG intensities of biofuels and thus ignore the inherent risk associated with biofuel production. This study aims to develop a transparent stochastic method for evaluating UK biofuels that determines both the magnitude and uncertainty of GHG intensity on the basis of current industry practices. Using wheat ethanol as a case study, we show that the GHG intensity could span a range of 40-110 gCO2e MJ-1 when land use change (LUC) emissions and various sources of uncertainty are taken into account, as compared with a regulatory default value of 44 gCO2e MJ-1. This suggests that the current deterministic regulatory framework underestimates wheat ethanol GHG intensity and thus may not be effective in evaluating transport fuels. Uncertainties in determining the GHG intensity of UK wheat ethanol include limitations of available data at a localized scale, and significant scientific uncertainty of parameters such as soil N2O and LUC emissions. Biofuel polices should be robust enough to incorporate the currently irreducible uncertainties and flexible enough to be readily revised when better science is available. © 2013 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biopolymers are generally considered an eco-friendly alternative to petrochemical polymers due to the renewable feedstock used to produce them and their biodegradability. However, the farming practices used to grow these feedstocks often carry significant environmental burdens, and the production energy can be higher than for petrochemical polymers. Life cycle assessments (LCAs) are available in the literature, which make comparisons between biopolymers and various petrochemical polymers, however the results can be very disparate. This review has therefore been undertaken, focusing on three biodegradable biopolymers, poly(lactic acid) (PLA), poly(hydroxyalkanoates) (PHAs), and starch-based polymers, in an attempt to determine the environmental impact of each in comparison to petrochemical polymers. Reasons are explored for the discrepancies between these published LCAs. The majority of studies focused only on the consumption of non-renewable energy and global warming potential and often found these biopolymers to be superior to petrochemically derived polymers. In contrast, studies which considered other environmental impact categories as well as those which were regional or product specific often found that this conclusion could not be drawn. Despite some unfavorable results for these biopolymers, the immature nature of these technologies needs to be taken into account as future optimization and improvements in process efficiencies are expected. © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 'sustainable remediation' concept has been broadly embraced by industry and governments in recent years in both the US and Europe. However, there is a strong need for more research to enhance its 'practicability'. In an attempt to fill this research gap, this study developed a generalised framework for selecting the most environmentally sustainable remedial technology under various site conditions. Four remediation technologies were evaluated: pump and treat (P&T), enhanced in situ bioremediation (EIB), permeable reactive barrier (PRB), and in situ chemical reduction (ISCR). Within the developed framework and examined site condition ranges, our results indicate that site characteristics have a profound effect on the life cycle impact of various remedial alternatives, thus providing insights and valuable information for determining what is considered the most desired remedy from an environmental sustainability perspective. © 2014 © 2014 University of Newcastle upon Tyne.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many aerospace companies are currently making the transition to providing fully-integrated product-service offerings in which their products are designed from the outset with life-cycle considerations in mind. Based on a case study at Rolls-Royce, Civil Aerospace, this paper demonstrates how an interactive approach to process simulation can be used to support the redesign of existing design processes in order to incorporate life-cycle engineering (LCE) considerations. The case study provides insights into the problems of redesigning the conceptual stages of a complex, concurrent engineering design process and the practical value of process simulation as a tool to support the specification of process changes in the context of engineering design. The paper also illustrates how development of a simulation model can provide significant benefit to companies through the understanding of process behaviour that is gained through validating the behaviour of the model using different design and iteration scenarios. Keywords: jet engine design; life-cycle engineering; LCE; process change; design process simulation; applied signposting model; ASM. Copyright © 2011 Inderscience Enterprises Ltd.