62 resultados para laser beam effects

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser beam diagnosis is usually carried out off-line in order to minimise the disruption to the process being carried out. This paper presents the results of a fractional sampling device for a high power beam diagnosis system capable of measuring in process beam properties such as beam diameter, intensity and beam position. The paper discusses the application of this sampling technique for monitoring beam properties during the laser materials processing operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser beam diagnosis is usually carried out off-line in order to minimise the disruption to the process being carried out. This paper presents the results of a fractional sampling device for a high power beam diagnosis system capable of measuring in process beam properties such as beam diameter, intensity and beam position. The paper discusses the application of this sampling technique for monitoring beam properties during the laser materials processing operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The measurement of high speed laser beam parameters during processing is a topic that has seen growing attention over the last few years as quality assurance places greater demand on the monitoring of the manufacturing process. The targets for any monitoring system is to be non-intrusive, low cost, simple to operate, high speed and capable of operation in process. A new ISO compliant system is presented based on the integration of an imaging plate and camera located behind a proprietary mirror sampling device. The general layout of the device is presented along with the thermal and optical performance of the sampling optic. Diagnostic performance of the system is compared with industry standard devices, demonstrating the high quality high speed data which has been generated using this system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During high-power cw Nd:YAG laser welding a vapour plume is formed containing vaporised material ejected from the keyhole. Spectroscopic studies of the vapour emission have demonstrated that the vapour can be considered as thermally excited gas with a stable temperature (less than 3000K), not as partially ionised plasma. In this paper, a review of temperatures in the vapour plume is presented. The difficulties in the analysis of the plume spectroscopic results are reviewed and explained. It is shown that particles present in the vapour interact with the laser beam, attenuating it. The attenuation can be calculated with Mie scattering theory, however, vaporisation and particle formation also both play a major role in this process. The laser beam is also defocused due to the scattering part of the attenuation mechanism, changing the energy density in the laser beam. Methods for mitigating the effects of the laser beam-vapour interaction, using control gases, are presented together with their advantages and disadvantages. This 'plume control' has two complementary roles: firstly, the gas must divert the vapour plume from out of the laser beam path, preventing the attenuation. Secondly, the gas has to stabilise the front wall of the keyhole, to prevent porosity formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A free space optical wireless communication system with 3 degree angular coverage and 1.25 GHz modulation bandwidth is reported, in which relatively narrow laser beam of a simultaneous high power, high modulation speed and ultra high modulation efficiency directly modulated two-electrode tapered laser diode is steered using a nematic phase-only Liquid-Crystal On Silicon Spatial Light Modulator (LCOS SLM) by displaying reconfigurable 256 phase level gratings. © 1983-2012 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A direct comparison between time resolved PLIF measurements of OH and two dimensional slices from a full three dimensional DNS data set of turbulent premixed flame kernels in lean methane/air mixture was presented. The local flame structure and the degree of flame wrinkling were examined in response to differing turbulence intensities and turbulent Reynolds numbers. Simulations were performed using the SEGA DNS code, which is based on the solution of the compressible Navier Stokes, species, and energy equations for a lean hydrocarbon mixture. For the OH PLIF measurements, a cluster of four Nd:YAG laser was fired sequentially at high repetition rates and used to pump a dye laser. The frequency doubled laser beam was formed into a sheet of 40 mm height using a cylindrical telescope. The combination of PLIF and DNS has been demonstrated as a powerful tool for flame analysis. This research will form the basis for the development of sub-grid-scale (SGS) models for LES of lean-premixed combustion systems such as gas turbines. This is an abstract of a paper presented at the 30th International Symposium on Combustion (Chicago, IL 7/25-30/2004).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work describes a new technique for the selective removal of steel using a conventional CO2 laser beam and a novel arrangement of inert and reactive gas jets to produce the gas equivalent of a rotary cutter.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During high-power continuous wave (cw) Nd:yttritium-aluminum-garnet (YAG) laser welding a vapor plume is formed containing vaporized material ejected from the keyhole. The gas used as a plume control mechanism affects the plume shape but not its temperature, which has been found to be less than 3000 K, independent of the atmosphere and plume control gases. In this study high-power (up to 8 kW) cw Nd:YAG laser welding has been performed under He, Ar, and N2 gas atmospheres, extending the power range previously studied. The plume was found to contain very small evaporated particles of diameter less than 50 nm. Rayleigh and Mie scattering theories were used to calculate the attenuation coefficient of the incident laser power by these small particles. In addition the attenuation of a 9 W Nd:YAG probe laser beam, horizontally incident across the plume generated by the high-power Nd:YAG laser, was measured at various positions with respect to the beam-material interaction point. Up to 40% attenuation of the probe laser power was measured at positions corresponding to zones of high concentration of vapor plume, shown by high-speed video measurements. These zones interact with the high-power Nd:YAG laser beam path and, can result in significant laser power attenuation. © 2004 Laser Institute of America.