43 resultados para large-scale systems

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optimization of dialogue policies using reinforcement learning (RL) is now an accepted part of the state of the art in spoken dialogue systems (SDS). Yet, it is still the case that the commonly used training algorithms for SDS require a large number of dialogues and hence most systems still rely on artificial data generated by a user simulator. Optimization is therefore performed off-line before releasing the system to real users. Gaussian Processes (GP) for RL have recently been applied to dialogue systems. One advantage of GP is that they compute an explicit measure of uncertainty in the value function estimates computed during learning. In this paper, a class of novel learning strategies is described which use uncertainty to control exploration on-line. Comparisons between several exploration schemes show that significant improvements to learning speed can be obtained and that rapid and safe online optimisation is possible, even on a complex task. Copyright © 2011 ISCA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a comparison between theoretical predictions and experimental results from a pin-on-disc test rig exploring friction-induced vibration. The model is based on a linear stability analysis of two systems coupled by sliding contact at a single point. Predictions are compared with a large volume of measured squeal initiations that have been post-processed to extract growth rates and frequencies at the onset of squeal. Initial tests reveal the importance of including both finite contact stiffness and a velocity-dependent dynamic model for friction, giving predictions that accounted for nearly all major clusters of squeal initiations from 0 to 5 kHz. However, a large number of initiations occurred at disc mode frequencies that were not predicted with the same parameters. These frequencies proved remarkably difficult to destabilise, requiring an implausibly high coefficient of friction. An attempt has been made to estimate the dynamic friction behaviour directly from the squeal initiation data, revealing complex-valued frequency-dependent parameters for a new model of linearised dynamic friction. These new parameters readily destabilised the disc modes and provided a consistent model that could account for virtually all initiations from 0 to 15 kHz. The results suggest that instability thresholds for a wide range of squeal-type behaviour can be predicted, but they highlight the central importance of a correct understanding and accurate description of dynamic friction at the sliding interface. © 2013 Elsevier Ltd. All rights reserved.