5 resultados para landslide
em Cambridge University Engineering Department Publications Database
Resumo:
Landslides occur both onshore and offshore, however little attention has been given to offshore landslides (submarine landslides). The unique characteristics of submarine landslides include large mass movements and long travel distances at very gentle slopes. Submarine landslides have significant impacts and consequences on offshore and coastal facilities. This paper presents data from a series of centrifuge tests simulating submarine landslide flows on a very gentle slope. Experiments were conducted at different gravity levels to understand the scaling laws involved in simulating submarine landslide flows through centrifuge modelling. The slope was instrumented with miniature sensors for measurements of pore pressure beneath the flow. A series of digital cameras were used to capture the flow in flight. The results provide a better understanding of the scaling laws that needs to be adopted for centrifuge experiments involving submarine landslide flows and gives an insight into the flow mechanisms. © 2010 Taylor & Francis Group, London.
Resumo:
Interbedded layers of glacial deposits and marine or glacimarine clay layers are a common feature of offshore sediment. Typically, offshore marine clays are lightly overconsolidated sensitive clay. Some case histories on submarine landslides show that the slip surface passes through these marine clay layers. In this paper a model is proposed for post-peak strain softening behavior of marine sensitive clay. The slope failure mechanism is examined using the concept of shear band propagation. It is shown that shear band propagation and post-peak stress-strain behavior of clay layers are two major factors in submarine slope stability analysis. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE).
Resumo:
The geological profile of many submerged slopes on the continental shelf consists of normally to lightly overconsolidated clays with depths ranging from a few meters to hundreds of meters. For these soils, earthquake loading can generate significant excess pore water pressures at depth, which can bring the slope to a state of instability during the event or at a later time as a result of pore pressure redistribution within the soil profile. Seismic triggering mechanisms of landslide initiation for these soils are analyzed with the use of a new simplified model for clays which predicts realistic variations of the stress-strain-strength relationships as well as pore pressure generation during dynamic loading in simple shear. The proposed model is implemented in a finite element program to analyze the seismic response of submarine slopes. These analyses provide an assessment of the critical depth and estimated displacements of the mobilized materials and thus are important components for the estimation of submarine landslide-induced tsunamis. © 2003 Elsevier B.V. All rights reserved.