3 resultados para irradiance

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is generally recognized that BIPV (building integrated photovoltaics) has the potential to become a major source of renewable energy in the urban environment. The actual output of a PV module in the field is a function of orientation, total irradiance, spectral irradiance, wind speed, air temperature, soiling and various system-related losses. In urban areas, the attenuation of solar radiation due to air pollution is obvious, and the solar spectral content subsequently changes. The urban air temperature is higher than that in the surrounding countryside, and the wind speed in urban areas is usually less than that in rural areas. Three different models of PV power are used to investigate the effect of urban climate on PV performance. The results show that the dimming of solar radiation in the urban environment is the main reason for the decrease of PV module output using the climatic data of urban and rural sites in Mexico City for year 2003. The urban PV conversion efficiency is higher than that of the rural PV system because the PV module temperature in the urban areas is slightly lower than that in the rural areas in the case. The DC power output of PV seems to be underestimated if the spectral response of PV in the urban environment is not taken into account based on the urban hourly meteorological data of Sao Paulo for year 2004. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BIPV(Building Integrated Photovoltaics) has progressed in the past years and become an element to be considered in city planning. BIPV has influence on microclimate in urban environments and the performance of BIPV is also affected by urban climate. The effect of BIPV on urban microclimate can be summarized under the following four aspects. The change of absorptivity and emissivity from original building surface to PV will change urban radiation balance. After installation of PV, building cooling load will be reduced because of PV shading effect, so urban anthropogenic heat also decreases to some extent. Because PV can reduce carbon dioxide emissions which is one of the reasons for urban heat island, BIPV is useful to mitigate this phenomena. The anthropogenic heat will alter after using BIPV, because partial replacement of fossil fuel means to change sensible heat from fossil fuel to solar energy. Different urban microclimate may have various effects on BIPV performance that can be analyzed from two perspectives. Firstly, BIPV performance may decline with the increase of air temperature in densely built areas because many factors in urban areas cause higher temperature than that of the surrounding countryside. Secondly, the change of solar irradiance at the ground level under urban air pollution will lead to the variation of BIPV performance because total solar irradiance usually is reduced and each solar cell has a different spectral response characteristic. The thermal model and performance model of ventilated BIPV according to actual meteorologic data in Tianjin(China) are combined to predict PV temperature and power output in the city of Tianjin. Then, using dynamic building energy model, cooling load is calculated after BIPV installation. The calculation made based in Tianjin shows that it is necessary to pay attention to and further analyze interaction between them to decrease urban pollution, improve BIPV Performance and reduce colling load. Copyright © 2005 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmospheric effects can significantly degrade the reliability of free-space optical communications. One such effect is scintillation, caused by atmospheric turbulence, refers to random fluctuations in the irradiance and phase of the received laser beam. In this paper we inv stigate the use of multiple lasers and multiple apertures to mitigate scintillation. Since the scintillation process is slow, we adopt a block fading channel model and study the outage probability under the assumptions of orthogonal pulse-position modulation and non-ideal photodetection. Assuming perfect receiver channel state information (CSI), we derive the signal-to-noise ratio (SNR) exponents for the cases when the scintillation is lognormal, exponential and gammagamma distributed, which cover a wide range of atmospheric turbulence conditions. Furthermore, when CSI is also available at the transmitter, we illustrate very large gains in SNR are possible (in some cases larger than 15 dB) by adapting the transmitted power. Under a long-term power constraint, we outline fundamental design criteria via a simple expression that relates the required number of lasers and apertures for a given code rate and number of codeword blocks to completely remove system outages. Copyright © 2009 IEEE.