5 resultados para internalised dominance

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plastic collapse modes of sandwich beams have been investigated experimentally and theoretically for the case of an aluminum alloy foam with cold-worked aluminum face sheets. Plastic collapse is by three competing mechanisms: face yield, indentation and core shear, with the active mechanism depending upon the choice of geometry and material properties. The collapse loads, as predicted by simple upper bound solutions for a rigid, ideally plastic beam, and by more refined finite element calculations are generally in good agreement with the measured strengths. However, a thickness effect of the foam core on the collapse strength is observed for collapse by core shear: the shear strength of the core increases with diminishing core thickness in relation to the cell size. Limit load solutions are used to construct collapse maps, with the beam geometrical parameters as axes. Upon displaying the collapse load for each collapse mechanism, the regimes of dominance of each mechanism and the associate mass of the beam are determined. The map is then used in optimal design by minimizing the beam weight for a given structural load index.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamic compressive response of a sandwich plate with a metallic corrugated core is predicted. The back face of the sandwich plate is held fixed whereas the front face is subjected to a uniform velocity, thereby compressing the core. Finite element analysis is performed to investigate the role of material inertia, strain hardening and strain rate hardening upon the dynamic collapse of the corrugated core. Three classes of collapse mode are identified as a function of impact velocity: (i) a three-hinge plastic buckling mode of wavelength equal to the strut length, similar to the quasi-static mode, (ii) a 'buckle-wave' regime involving inertia-mediated plastic buckling of wavelength less than that of the strut length, and (iii) a 'stubbing' regime, with shortening of the struts by local fattening at the front face. The presence of strain hardening reduces the regime of dominance of the stubbing mode. The influence of material strain rate sensitivity is evaluated by introducing strain rate dependent material properties representative of type 304 stainless steel. For this choice of material, strain rate sensitivity has a more minor influence than strain hardening, and consequently the dynamic collapse strength of a corrugated core is almost independent of structural dimension. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herein we report on the transport characteristics of rapid pulsed vacuum-arc thermally annealed, individual and network multi-walled carbon nanotubes. Substantially reduced defect densities (by at least an order of magnitude), measured by micro-Raman spectroscopy, and were achieved by partial reconstruction of the bamboo-type defects during thermal pulsing compared with more traditional single-pulse thermal annealing. Rapid pulsed annealed processed networks and individual multi-walled nanotubes showed a consistent increase in conductivity (of over a factor of five at room temperature), attributed to the reduced number density of resistive axial interfaces and, in the case of network samples, the possible formation of structural bonds between crossed nanotubes. Compared to the highly defective as-grown nanotubes, the pulsed annealed samples exhibited reduced temperature sensitivity in their transport characteristics signifying the dominance of scattering events from structural defects. Transport measurements in the annealed multi-walled nanotubes deviated from linear Ohmic, typically metallic, behavior to an increasingly semiconducting-like behavior attributed to thermally induced axial strains. Rapid pulsed annealed networks had an estimated band gap of 11.26 meV (as-grown; 6.17 meV), and this observed band gap enhancement was inherently more pronounced for individual nanotubes compared with the networks most likely attributed to mechanical pinning effect of the probing electrodes which possibly amplifies the strain induced band gap. In all instances the estimated room temperature band gaps increased by a factor of two. The gating performance of back-gated thin-film transistor structures verified that the observed weak semiconductivity (p-type) inferred from the transport characteristic at room temperature. © 2014 Copyright Taylor & Francis Group, LLC.