10 resultados para intercalation

em Cambridge University Engineering Department Publications Database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by recent experimental work, we use first-principles density functional theory methods to conduct an extensive search for low enthalpy structures of C$_6$Ca under pressure. As well as a range of buckled structures, which are energetically competitive over an intermediate range of pressures, we show that the high pressure system ($\gtrsim 18$ GPa) is unstable towards the formation of a novel class of layered structures, with the most stable compound involving carbon sheets containing five- and eight-membered rings. As well as discussing the energetics of the different classes of low enthalpy structures, we comment on the electronic structure of the high pressure compound and its implications for superconductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surfactant-clay interactions are key for the development of new clay applications and inorganic-organic nanocomposites. Bentonite, with montmorillonite as the principal clay mineral constituent, was modified with varying concentrations of hexadecethyltrimethylammonium chloride (HDTMA), as a reference cationic surfactant, polypropylene glycol (PPG) 1200 and 2000, as non-ionic surfactants, and lecithin and Topcithin®, as amphiphilic phospholipid surfactants, according to the cation exchange capacity (CEC). The modified bentonites were characterised by X-ray diffraction, thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectrometry, specific surface area and pore volume. Three intercalation regions have been identified depending on the surfactant. The non-ionic surfactant caused only a crystalline expansion of bentonite interlayers, while the cationic surfactant induced an osmotic intercalation. The amphiphilic lecithin derivatives intercalated more extensively with the bentonite matrix. The TGA and the FTIR spectra showed that, at lower concentrations, the PPGs and HDTMA adopted a disordered conformation that required more energy to degrade, while at higher concentrations, the surfactants were ordered in the interlayer space of the bentonite. The lecithin derivative surfactant had a greater thermal and conformation stability. The specific surface area reduced with increasing surfactant concentrations. This study highlights the effect of surfactant type on the interlayer space of montmorillonite in the perspective of developing novel clay functions. © 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of layered inorganic semiconductors can be manipulated by the insertion of foreign molecular species via a process known as intercalation. In the present study, we investigate the phenomenon of organic moiety (R-NH3I) intercalation in layered metal-halide (PbI2)-based inorganic semiconductors, leading to the formation of inorganic-organic (IO) perovskites [(R-NH3)2PbI4]. During this intercalation strong resonant exciton optical transitions are created, enabling study of the dynamics of this process. Simultaneous in situ photoluminescence (PL) and transmission measurements are used to track the structural and exciton evolution. On the basis of the experimental observations, a model is proposed which explains the process of IO perovskite formation during intercalation of the organic moiety through the inorganic semiconductor layers. The interplay between precursor film thickness and organic solution concentration/solvent highlights the role of van der Waals interactions between the layers, as well as the need for maintaining stoichiometry during intercalation. Nucleation and growth occurring during intercalation matches a Johnson-Mehl-Avrami-Kolmogorov model, with results fitting both ideal and nonideal cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drosophila germ-band extension (GBE) is an example of the convergence and extension movements that elongate and narrow embryonic tissues. To understand the collective cell behaviours underlying tissue morphogenesis, we have continuously quantified cell intercalation and cell shape change during GBE. We show that the fast, early phase of GBE depends on cell shape change in addition to cell intercalation. In antero-posterior patterning mutants such as those for the gap gene Krüppel, defective polarized cell intercalation is compensated for by an increase in antero-posterior cell elongation, such that the initial rate of extension remains the same. Spatio-temporal patterns of cell behaviours indicate that an antero-posterior tensile force deforms the germ band, causing the cells to change shape passively. The rate of antero-posterior cell elongation is reduced in twist mutant embryos, which lack mesoderm. We propose that cell shape change contributing to germ-band extension is a passive response to mechanical forces caused by the invaginating mesoderm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Granular reactive materials have higher permeability and are therefore desirable for in situ groundwater pollution control. Three granular bentonites were prepared: an Al-pillared bentonite (PBg), an organo-bentonite (OBg) using a quaternary ammonium cation (QAC), and an inorgano-organo-bentonite (IOBg), using both the pillaring agent and the QAC. Powdered IOB (IOBp) was also prepared to test the effect of particle size. The modified bentonites were characterised with X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA) and uniaxial compression tests. The d-spacing increased only with QAC intercalation. The Young's modulus of IOBg was twice as high as OBg. Batch adsorption tests were performed with aqueous multimetal solutions of Pb2+, Cu2+, Cd2+, Zn2+ and Ni2+ ions, with liquid dodecane and with aqueous dodecane solutions. Metal adsorption fit the Langmuir isotherm. Adsorption occurred within 30min for PBg, while the granular organo-bentonite needed at least 12h to reach equilibrium. IOBp had the maximum adsorption capacity at higher metal concentration and lower adsorbent content (Cu2+: 2.2, Ni2+: 1.7, Zn2+: 1.4, Cd2+: 0.9 and Pb2+: 0.7 all in mmolg-1). The dual pillaring of the QAC and Al hydroxide increased the adsorption. The adsorption of liquid dodecane was in the order IOBg>OBg>PBg (3.2>2.7>1.7mmolg-1). Therefore IOBg has potential for the removal of toxic compounds found in soil, groundwater, storm water and wastewater. © 2012 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inorganic-organic (IO) hybrid nano- and microcrystals are fabricated by a low-cost, environmentally friendly and easily scaled-up route. Lead(II) iodide (PbI 2) nano/microcrystals are obtained by solvothermal techniques and subsequent IO hybrid (C 12H 25NH 3) 2PbI 4 crystals are produced by intercalation of the organic moiety. The hexagonally shaped crystals obtained range in size from 20 nm to ∼7 μm. Sequential stacking of inorganic/organic layers in these IO hybrid crystals results in strong room-temperature exciton photoluminescence, wherein the excitons are confined within the inorganic sheets. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complementary in situ X-ray photoelectron spectroscopy (XPS), X-ray diffractometry, and environmental scanning electron microscopy are used to fingerprint the entire graphene chemical vapor deposition process on technologically important polycrystalline Cu catalysts to address the current lack of understanding of the underlying fundamental growth mechanisms and catalyst interactions. Graphene forms directly on metallic Cu during the high-temperature hydrocarbon exposure, whereby an upshift in the binding energies of the corresponding C1s XPS core level signatures is indicative of coupling between the Cu catalyst and the growing graphene. Minor carbon uptake into Cu can under certain conditions manifest itself as carbon precipitation upon cooling. Postgrowth, ambient air exposure even at room temperature decouples the graphene from Cu by (reversible) oxygen intercalation. The importance of these dynamic interactions is discussed for graphene growth, processing, and device integration.