6 resultados para integrated web platform
em Cambridge University Engineering Department Publications Database
Resumo:
BACKGROUND: Two phenomena have become increasingly visible over the past decade: the significant global burden of disease arising from mental illness and the rapid acceleration of mobile phone usage in poorer countries. Mental ill-health accounts for a significant proportion of global disability-adjusted life years (DALYs) and years lived with disability (YLDs), especially in poorer countries where a number of factors combine to exacerbate issues of undertreatment. Yet poorer countries have also witnessed significant investments in, and dramatic expansions of, mobile coverage and usage over the past decade. DEBATE: The conjunction of high levels of mental illness and high levels of mobile phone usage in poorer countries highlights the potential for "mH(2)" interventions--i.e. mHealth (mobile technology-based) mental health interventions--to tackle global mental health challenges. However, global mental health movements and initiatives have yet to engage fully with this potential, partly because of scepticism towards technological solutions in general and partly because existing mH(2) projects in mental health have often taken place in a fragmented, narrowly-focused, and small-scale manner. We argue for a deeper and more sustained engagement with mobile phone technology in the global mental health context, and outline the possible shape of an integrated mH(2) platform for the diagnosis, treatment, and monitoring of mental health. SUMMARY: Existing and developing mH(2) technologies represent an underutilised resource in global mental health. If development, evaluation, and implementation challenges are overcome, an integrated mH2 platform would make significant contributions to mental healthcare in multiple settings and contexts.
Resumo:
The capability to focus electromagnetic energy at the nanoscale plays an important role in nanoscinece and nanotechnology. It allows enhancing light matter interactions at the nanoscale with applications related to nonlinear optics, light emission and light detection. It may also be used for enhancing resolution in microscopy, lithography and optical storage systems. Hereby we propose and experimentally demonstrate the nanoscale focusing of surface plasmons by constructing an integrated plasmonic/photonic on chip nanofocusing device in silicon platform. The device was tested directly by measuring the optical intensity along it using a near-field microscope. We found an order of magnitude enhancement of the intensity at the tip's apex. The spot size is estimated to be 50 nm. The demonstrated device may be used as a building block for "lab on a chip" systems and for enhancing light matter interactions at the apex of the tip.
Resumo:
The development of a high performance hybrid integration platform is demonstrated using an all optical wavelength converter based on an integrated SOA MZI. The device structure, transfer functions, power penalties and regenerative properties are presented. © 2004 Optical Society of America.
Resumo:
A novel technological platform for multiple gas detection based on the use of PCB-integrated polymer waveguides is presented. A proof-of-principle ammonia sensor is reported integrating onto low-cost FR4 substrates all essential photonic, electronic and chemical components. The device's potential to detect multiple gases is demonstrated. © 2011 IEEE.
Resumo:
This paper presents a novel platform for the formation of cost-effective PCB-integrated optical waveguide sensors. The sensor design relies on the use of multimode polymer waveguides that can be formed directly on standard PCBs and commercially-available chemical dyes, enabling the integration of all essential sensor components (electronic, photonic, chemical) on low-cost substrates. Moreover, it enables the detection of multiple analytes from a single device by employing waveguide arrays functionalised with different chemical dyes. The devices can be manufactured with conventional methods of the PCB industry, such as solder-reflow processes and pick-and-place assembly techniques. As a proof of principle, a PCB-integrated ammonia gas sensor is fabricated on a FR4 substrate. The sensor operation relies on the change of the optical transmission characteristics of chemically functionalised optical waveguides in the presence of ammonia molecules. The fabrication and assembly of the sensor unit, as well as fundamental simulation and characterisation studies, are presented. The device achieves a sensitivity of approximately 30 ppm and a linear response up to 600 ppm at room temperature. Finally, the potential to detect multiple analytes from a single device is demonstrated using principal-component analysis. © 1983-2012 IEEE.