10 resultados para infrared spectroscopy,

em Cambridge University Engineering Department Publications Database


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The addition of silicon to hydrogenated amorphous carbon can have the advantageous effect of lowering the compressive stress, improving the thermal stability of its hydrogen, and maintaining a low friction coefficient up to high humidity. Most experiments to date have been on hydrogenated amorphous carbon-silicon alloys (a-C1-xSix:H) deposited by rf plasma enhanced chemical vapor deposition. This method gives alloys with sizeable hydrogen content and only moderate hardness. Here we use a high plasma density source known as the electron cyclotron wave resonance source to prepare films with higher sp3 content and lower hydrogen content. The composition and bonding in the alloys is determined by x-ray photoelectron spectroscopy, Rutherford backscattering, elastic recoil detection analysis, visible and ultraviolet (UV) Raman spectroscopy, infrared spectroscopy, and x-ray reflectivity. We find that it is possible to produce relatively hard, low stress, low friction, almost humidity insensitive a-C1-xSix:H alloys with a good optical transparency and a band gap well over 2.5 eV. The friction behavior and friction mechanism of these alloys are studied and compared with that of a-C:H, ta-C:H, and ta-C. We show how UV Raman spectroscopy allows the direct detection of Si-C, Si-Hx, and C-Hx vibrations, not seen in visible Raman spectra. © 2001 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Structural changes induced by the incorporation of nitrogen into ta-C : H films have been studied by Electron Energy Loss Spectroscopy, X-Ray Photoelectron Spectroscopy, Fourier Transformed Infrared Spectroscopy and Ultraviolet-Visible Spectroscopy. ta-C:H films have been synthesised using a low pressure Electron Cyclotron Wave Resonance (ECWR) source which provides a plasma beam with a high degree of ionisation and dissociation. Nitrogen was incorporated by adding N2 to the C2H2 plasma used for the deposition of ta-C : H films. The N/C atomic ratio in the films rises rapidly until the N2/C2H2 gas ratio reaches three, and then increases more gradually, while the deposition rate decreases steeply. Chemical sputtering of the forming films and the formation of molecular nitrogen within the films limit the maximum nitrogen content to about N/C = 0.6. For low nitrogen content the films retain their diamond-like properties, however as N/C atomic ratio increases, a polymeric-like material is formed, with >C=N- structures and terminating C=N and NH groups that decrease the connectivity of the network.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gas-phase silver nanoparticles were coated with silicon dioxide (SiO2) by photoinduced chemical vapor deposition (photo-CVD). Silver nanoparticles, produced by inert gas condensation, and a SiO2 precursor, tetraethylorthosilicate (TEOS), were exposed to vacuum ultraviolet (VUV) radiation at atmospheric pressure and varying temperatures. The VUV photons dissociate the TEOS precursor, initiating a chemical reaction that forms SiO2 coatings on the particle surfaces. Coating thicknesses were measured for a variety of operation parameters using tandem differential mobility analysis and transmission electron microscopy. The chemical composition of the particle coatings was analyzed using energy dispersive x-ray spectrometry and Fourier transform infrared spectroscopy. The highest purity films were produced at 300-400 degrees C with low flow rates of additional oxygen. The photo-CVD coating technique was shown to effectively coat nanoparticles and limit core particle agglomeration at concentrations up to 10(7) particles cm(-3).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydroxyapatite-gelatin composites have been proposed as suitable scaffolds for bone and dentin tissue regeneration. There is considerable interest in producing these scaffolds using biomimetic methods due to their low energy costs and potential to create composites similar to the tissues they are intended to replace. Here an existing process used to coat a surface with hydroxyapatite under near physiological conditions, the alternate soaking process, is modified and automated using an inexpensive "off the shelf" robotics kit. The process is initially used to precipitate calcium phosphate coatings. Then, in contrast to previous utilizations of the alternate soaking process, gelatin was added directly to the solutions in order to co-precipitate hydroxyapatite-gelatin composites. Samples were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and nanoindentation. Calcium phosphate coatings formed by the alternate soaking process exhibited different calcium to phosphate ratios, with correspondingly distinct structural morphologies. The coatings demonstrated an interconnected structure with measurable mechanical properties, even though they were 95% porous. In contrast, hydroxyapatite-gelatin composite coatings over 2mm thick could be formed with little visible porosity. The hydroxyapatite-gelatin composites demonstrate a composition and mechanical properties similar to those of cortical bone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Silicon nanoparticles between 2.5 nm and 30 nm in diameter were functionalized by means of photoassisted hydrosilylation reactions in the aerosol phase with terminal alkenes of varying chain length. Using infrared spectroscopy and nuclear magnetic resonance, the chemical composition of the alkyl layer was determined for each combination of particle size and alkyl chain length. The spectroscopic techniques were used to determine that smaller particles functionalized with short chains in the aerosol phase tend to attach to the interior (β) alkenyl carbon atom, whereas particles >10 nm in diameter exhibit attachment primarily with the exterior (α) alkenyl carbon atom, regardless of chain length. © 2011 American Chemical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fabrication of flexible multilayer graphene oxide (GO) membrane and carbon nanotubes (CNTs) using a rare form of high-purity natural graphite, vein graphite, is reported for the first time. Graphite oxide is synthesized using vein graphite following Hummer's method. By facilitating functionalized graphene sheets in graphite oxide to self-assemble, a multilayer GO membrane is fabricated. Electric arc discharge is used to synthesis CNTs from vein graphite. Both multilayer GO membrane and CNTs are investigated using microscopy and spectroscopy experiments, i.e., scanning electron microscopy (SEM), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), core level photoelectron spectroscopy, and C K-edge X-ray absorption spectroscopy (NEXAFS), to characterize their structural and topographical properties. Characterization of vein graphite using different techniques reveals that it has a large number of crystallites, hence the large number of graphene sheets per crystallite, preferentially oriented along the (002) plane. NEXAFS and core level spectra confirm that vein graphite is highly crystalline and pure. Fourier transform infrared (FT-IR) and C 1s core level spectra show that oxygen functionalities (-C-OH, -CO,-C-O-C-) are introduced into the basal plane of graphite following chemical oxidation. Carbon nanotubes are produced from vein graphite through arc discharge without the use of any catalyst. HRTEM confirm that multiwalled carbon nanotube (MWNTs) are produced with the presence of some structure in the central pipe. A small percentage of single-walled nanotubes (SWNTs) are also produced simultaneously with MWNTs. Spectroscopic and microscopic data are further discussed here with a view to using vein graphite as the source material for the synthesis of carbon nanomaterials. © 2013 American Chemical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this article was the determination of the degree of crystallinity of a series of heat-set poly(ethylene terephthalate) (PET) films and their study by thermomechanical analysis (TMA) in order to elucidate a peculiar behaviour that takes place around the glass transition region. For this purpose, amorphous cast Mylar films from DuPont were annealed at 115 °C for various periods of time. Four methods were used to study the crystallinity of the samples prepared: differential scanning calorimetry (DSC), density measurements (DM), wide-angle X-ray diffraction (WAXD), and Fourier transform infrared spectroscopy (FT-IR). From the results obtained, the following conclusions are drawn: amorphous PET Mylar films can be crystallized in a degree of about up to 30% after thermal treatment for 30 min (cold crystallization) above glass transition temperature. When these semicrystalline samples are subjected to TMA, they show a two step penetration of the probe into them, which decreases with the increase of the degree of crystallinity. The first step of penetration was attributed to the shrinkage of the amorphous or semicrystalline sample, which takes place on the glass transition temperature, while the second step was attributed to the continuous softening of the sample, and the reorganization of the matter which takes place on heating run due to cold crystallization. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reactive magnesia (MgO) was used as an alkali activator for ground granulated blast-furnace slag (GGBS) and its activating efficiency was investigated compared with hydrated lime. GGBS-MgO and GGBS-hydrated lime paste samples with different compositions and different water to solid ratios were prepared and cured for different periods. A range of tests was conducted to investigate the properties and microstructure of the pastes, including compressive strength, X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray and thermogravimetric analysis. The results showed that the reactive MgO acts as an effective alkali activator of GGBS, achieving higher 28-day compressive strength than that of the corresponding GGBS-hydrated lime system. The extensive microstructural investigation indicated that the main hydration product of reactive MgO-activated GGBS and hydrated lime-activated GGBS systems was hydrated calcium silicate, but there was much more hydrotalcite present in the former, which contributed to its superior 28-day compressive strength.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reaction between MgO and microsilica has been studied by many researchers, who confirmed the formation of magnesium silicate hydrate. The blend was reported to have the potential as a novel material for construction and environment purposes. However, the characteristics of MgO vary significantly, e.g., reactivity and purity, which would have an effect on the hydration process of MgO-silica blend. This paper investigated the strength and hydration products of reactive MgO and silica blend at room temperature up to 90 days. The existence of magnesium silicate hydrate after 7 days' curing was confirmed with the help of infrared spectroscopy, thermogravimetric analysis and X-ray diffraction. The microstructural and elemental analysis of the resulting magnesium silicate hydrate was conducted using scanning electron microscopy and energy dispersive spectroscopy. In addition, the effect of characteristics of MgO on the hydration process was discussed. It was found that the synthesis of magnesium silicate hydrate was highly dependent on the reactivity of the precursors. MgO and silica with higher reactivity resulted in higher formation rate of magnesium silicate hydrate. In addition, the impurity in the MgO affects the pH value of the blends, which in turn determines the solubility of silica and the formation of magnesium silicate hydrate. © 2014 Elsevier Ltd. All rights reserved.