9 resultados para infrared: solar system

em Cambridge University Engineering Department Publications Database


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The basic types of hybrid PV/thermal solar system and their performance were analyzed comparatively. The research method and recent developments of PV/T system were described. This paper gave some examples of PV/T products and demonstration project. Finally, some main problems, which should be solved in R&D of PV/T system, were presented and the outlook of PV/T technology was briefly discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of band-edge lasing from dye-doped chiral nematic liquid crystals has thus far been largely restricted to visible wavelengths. In this paper, a wide range of commercially available laser dyes are examined for their suitability as infrared emitters within a chiral nematic host. Problems such as poor solubility and reduced quantum efficiencies are overcome, and successful band-edge lasing is demonstrated within the range of 735-850 nm, using the dyes LD800, HITC-P and DOTC-P. This paper also reports on progress towards widely tuneable liquid crystal lasers, capable of emission in the region 460- 850 nm. Key to this is the use of common pump source, capable of simultaneously exciting all of the dyes (both infrared and visible) that are present within the system. Towards this aim, we successfully demonstrate near-infrared lasing (800 nm) facilitated by Förster energy transfer between the visible dye DCM, and the infra-red dye LD800, enabling pump wavelengths anywhere between 420 and 532 nm to be used. These results demonstrate that small and low-cost tuneable visible to near-infrared laser sources are achievable, using a single common pump source. Such devices are envisaged to have wide-ranging applications including medical imaging (including optical coherence tomography), point-of-care optical medical diagnostics (such as flow cytometry), telecommunications, and optical signatures for security coatings. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of band-edge lasing from dye-doped chiral nematic liquid crystals has thus far been largely restricted to visible wavelengths. In this paper, a wide range of commercially available laser dyes are examined for their suitability as infrared emitters within a chiral nematic host. Problems such as poor solubility and reduced quantum efficiencies are overcome, and successful band-edge lasing is demonstrated within the range of 735-850 nm, using the dyes LD800, HITC-P and DOTC-P. This paper also reports on progress towards widely tuneable liquid crystal lasers, capable of emission in the region 460- 850 nm. Key to this is the use of common pump source, capable of simultaneously exciting all of the dyes (both infrared and visible) that are present within the system. Towards this aim, we successfully demonstrate near-infrared lasing (800 nm) facilitated by Förster energy transfer between the visible dye DCM, and the infra-red dye LD800, enabling pump wavelengths anywhere between 420 and 532 nm to be used. These results demonstrate that small and low-cost tuneable visible to near-infrared laser sources are achievable, using a single common pump source. Such devices are envisaged to have wide-ranging applications including medical imaging (including optical coherence tomography), point-of-care optical medical diagnostics (such as flow cytometry), telecommunications, and optical signatures for security coatings. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The composite nature of mineralized natural materials is achieved through both the microstructural inclusion of an organic component and an overall microstructure that is controlled by templating onto organic macromolecules. A modification of an existing laboratory technique is developed for the codeposition of a CaCO3-gelatin composite with a controllable organic content. First, calibration curves are developed to determine the organic content of a CaCO3-gelatin composite from infrared spectra. Second, a CaCO3-gelatin composite is deposited on either glass coverslips or demineralized eggshell membranes using an automated alternating soaking process. Electron microscopy images and use of the infrared spectra calibration curves show that by altering the amount of gelatin in the ionic growth solutions, the final organic component of the mineral can be regulated over the range of 1-10%, similar to that of natural eggshell. © 2012 Materials Research Societ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Y2-x Erx O3 thin films, with x varying between 0 and 0.72, have been successfully grown on crystalline silicon (c-Si) substrates by radio-frequency magnetron cosputtering of Y2 O 3 and Er2 O3 targets. As-deposited films are polycrystalline, showing the body-centered cubic structure of Y2 O3, and show only a slight lattice parameter contraction when x is increased, owing to the insertion of Er ions. All the films exhibit intense Er-related optical emission at room temperature both in the visible and infrared regions. By studying the optical properties for different excitation conditions and for different Er contents, all the mechanisms (i.e., cross relaxations, up-conversions, and energy transfers to impurities) responsible for the photoluminescence (PL) emission have been identified, and the existence of two different well-defined Er concentration regimes has been demonstrated. In the low concentration regime (x up to 0.05, Er-doped regime), the visible PL emission reaches its highest intensity, owing to the influence of up-conversions, thus giving the possibility of using Y2-x Er x O3 films as an up-converting layer in the rear of silicon solar cells. However, most of the excited Er ions populate the first two excited levels 4I11/2 and 4I13/2, and above a certain excitation flux a population inversion condition between the former and the latter is achieved, opening the route for the realization of amplifiers at 2.75 μm. Instead, in the high concentration regime (Er-compound regime), an increase in the nonradiative decay rates is observed, owing to the occurrence of cross relaxations or energy transfers to impurities. As a consequence, the PL emission at 1.54 μm becomes the most intense, thus determining possible applications for Y2-x Erx O 3 as an infrared emitting material. © 2009 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have prepared single crystalline SnO2 and ZnO nanowires and polycrystalline TiO2 nanotubes (1D networks) as well as nanoparticle-based films (3D networks) from the same materials to be used as photoanodes for solid-state dye-sensitized solar cells. In general, superior photovoltaic performance can be achieved from devices based on 3-dimensional networks, mostly due to their higher short circuit currents. To further characterize the fabricated devices, the electronic properties of the different networks were measured via the transient photocurrent and photovoltage decay techniques. Nanowire-based devices exhibit extremely high, light independent electron transport rates while recombination dynamics remain unchanged. This indicates, contrary to expectations, a decoupling of transport and recombination dynamics. For typical nanoparticle-based photoanodes, the devices are usually considered electron-limited due to the poor electron transport through nanocrystalline titania networks. In the case of the nanowire-based devices, the system becomes limited by the organic hole transporter used. In the case of polycrystalline TiO2 nanotube-based devices, we observe lower transport rates and higher recombination dynamics than their nanoparticle-based counterparts, suggesting that in order to improve the electron transport properties of solid-state dye-sensitized solar cells, single crystalline structures should be used. These findings should aid future design of photoanodes based on nanowires or porous semiconductors with extended crystallinity to be used in dye-sensitized solar cells. © 2013 The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a mid-infrared Raman-soliton continuum extending from 1.9 to 3 μm in a highly germanium-doped silica-clad fiber, pumped by a nanotube mode-locked thulium-doped fiber system, delivering 12 kW sub-picosecond pulses at 1.95 μm. This simple and robust source of light covers a portion of the atmospheric transmission window. © 2013 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work we compare the performance of organic solar cells, based on the bulk heterojunction system of P3HT:PCBM when adequate silver nanoparticles (NPs) are incorporated in two distinct places among the device structure. Introduction of NPs on top of the transparent anode revealed better overall performance with an increased efficiency of 17%. Alternatively, placing the NPs on top of the active photovoltaic layer resulted to 25% higher photo-current generation albeit with inferior electrical characteristics (i.e series and shunt resistance). Our findings suggest that enhanced scattering to non-specular directions from NPs site is maximized when penetrating light meets the particles after the polymer blend, but even this mechanism is not sufficient enough to explain the enhanced short circuit current observed. A second mechanism should be feasible; that is plasmon enhancement which is more efficient in the case where NPs are in direct contact with the polymer blend. J-V characteristics measured in the dark showed that NPs placed on top of the ITO film act as enhanced hole conducting sites, as evident by the lower series resistance values in these cells, suggesting this mechanism as more significant in this case. © 2012 Elsevier B.V. All rights reserved.