24 resultados para infinite dimensional Lie groups
em Cambridge University Engineering Department Publications Database
Resumo:
The present paper proposes a unified geometric framework for coordinated motion on Lie groups. It first gives a general problem formulation and analyzes ensuing conditions for coordinated motion. Then, it introduces a precise method to design control laws in fully actuated and underactuated settings with simple integrator dynamics. It thereby shows that coordination can be studied in a systematic way once the Lie group geometry of the configuration space is well characterized. Applying the proposed general methodology to particular examples allows to retrieve control laws that have been proposed in the literature on intuitive grounds. A link with Brockett's double bracket flows is also made. The concepts are illustrated on SO(3), SE(2) and SE(3). © 2010 IEEE.
Resumo:
This paper studies the coordinated motion of a group of agents evolving on a Lie group. Left-or rightinvariance with respect to the absolute position on the group lead to two different characterizations of relative positions and two associated definitions of coordination (fixed relative positions). Conditions for each type of coordination are derived in the associated Lie algebra. This allows to formulate the coordination problem on Lie groups as consensus in a vector space. Total coordination occurs when both types of coordination hold simultaneously. The discussion in this paper provides a common geometric framework for previously published coordination control laws on SO(3), SE(2) and SE(3). The theory is illustrated on the group of planar rigid motion SE(2). © 2008 IEEE.
Resumo:
This work considers the problem of fitting data on a Lie group by a coset of a compact subgroup. This problem can be seen as an extension of the problem of fitting affine subspaces in n to data which can be solved using principal component analysis. We show how the fitting problem can be reduced for biinvariant distances to a generalized mean calculation on an homogeneous space. For biinvariant Riemannian distances we provide an algorithm based on the Karcher mean gradient algorithm. We illustrate our approach by some examples on SO(n). © 2010 Springer -Verlag Berlin Heidelberg.
Resumo:
The inhomogeneous Poisson process is a point process that has varying intensity across its domain (usually time or space). For nonparametric Bayesian modeling, the Gaussian process is a useful way to place a prior distribution on this intensity. The combination of a Poisson process and GP is known as a Gaussian Cox process, or doubly-stochastic Poisson process. Likelihood-based inference in these models requires an intractable integral over an infinite-dimensional random function. In this paper we present the first approach to Gaussian Cox processes in which it is possible to perform inference without introducing approximations or finitedimensional proxy distributions. We call our method the Sigmoidal Gaussian Cox Process, which uses a generative model for Poisson data to enable tractable inference via Markov chain Monte Carlo. We compare our methods to competing methods on synthetic data and apply it to several real-world data sets. Copyright 2009.
Resumo:
The inhomogeneous Poisson process is a point process that has varying intensity across its domain (usually time or space). For nonparametric Bayesian modeling, the Gaussian process is a useful way to place a prior distribution on this intensity. The combination of a Poisson process and GP is known as a Gaussian Cox process, or doubly-stochastic Poisson process. Likelihood-based inference in these models requires an intractable integral over an infinite-dimensional random function. In this paper we present the first approach to Gaussian Cox processes in which it is possible to perform inference without introducing approximations or finite-dimensional proxy distributions. We call our method the Sigmoidal Gaussian Cox Process, which uses a generative model for Poisson data to enable tractable inference via Markov chain Monte Carlo. We compare our methods to competing methods on synthetic data and apply it to several real-world data sets.
Resumo:
A pivotal problem in Bayesian nonparametrics is the construction of prior distributions on the space M(V) of probability measures on a given domain V. In principle, such distributions on the infinite-dimensional space M(V) can be constructed from their finite-dimensional marginals---the most prominent example being the construction of the Dirichlet process from finite-dimensional Dirichlet distributions. This approach is both intuitive and applicable to the construction of arbitrary distributions on M(V), but also hamstrung by a number of technical difficulties. We show how these difficulties can be resolved if the domain V is a Polish topological space, and give a representation theorem directly applicable to the construction of any probability distribution on M(V) whose first moment measure is well-defined. The proof draws on a projective limit theorem of Bochner, and on properties of set functions on Polish spaces to establish countable additivity of the resulting random probabilities.