5 resultados para industrial data
em Cambridge University Engineering Department Publications Database
Application of scalar dissipation rate modelling to industrial burners in partially premixed regimes
Resumo:
The objective of this paper is to test various available turbulent burning velocity models on an experimental version of Siemens small scale combustor using the commercial CFD code. Failure of burning velocity model with different expressions for turbulent burning velocity is observed with an unphysical flame flashback into the swirler. Eddy Dissipation Model/Finite Rate Chemistry is found to over-predict mean temperature and species concentrations. Solving for reaction progress equation with its variance using scalar dissipation rate modelling produced reasonably good agreement with the available experimental data. Two different turbulence models Shear Stress Transport (SST) and Scale Adaptive Simulation (SAS) SST are tested and results from transient SST simulations are observed to be predicting well. SAS-SST is found to under-predict with temperature and species distribution.
Resumo:
This article explores risk management in global industrial investment by identifying linkages and gaps between theories and practices. It identifies opportunities for further development of the field. Three related bodies of literature have been reviewed: risk management, global manufacturing and investment. The review suggests that risk management in global manufacturing is overlooked in the literature; that existing theoretical risk management processes are not well developed in the global manufacturing context and that the investment literature applies mainly to financial risk assessment rather than investment risk management structures. Further, there appears to be a serious lack of systematic industrial risk management in investment decision making. This article highlights the opportunities to deploy current good practices more effectively as well as the need to develop more robust theories of industrial investment risk management. The approach adopted to investigate this multidisciplinary topic included a historical review of literature to understand the diverse background of theoretical development. A case study research approach was adopted to collect data, involving four global manufacturing companies and one risk management advisory company to observe the patterns and rationale of current practices. Supporting arguments from secondary data sources reinforced the findings. The research focuses risk management in global industrial investment. It links theories with practice to understand the existing knowledge gap and proposes key research themes for further research. © 2013 Macmillan Publishers Ltd. 1460-3799 Risk Management.
Resumo:
Discrete element modeling is being used increasingly to simulate flow in fluidized beds. These models require complex measurement techniques to provide validation for the approximations inherent in the model. This paper introduces the idea of modeling the experiment to ensure that the validation is accurate. Specifically, a 3D, cylindrical gas-fluidized bed was simulated using a discrete element model (DEM) for particle motion coupled with computational fluid dynamics (CFD) to describe the flow of gas. The results for time-averaged, axial velocity during bubbling fluidization were compared with those from magnetic resonance (MR) experiments made on the bed. The DEM-CFD data were postprocessed with various methods to produce time-averaged velocity maps for comparison with the MR results, including a method which closely matched the pulse sequence and data processing procedure used in the MR experiments. The DEM-CFD results processed with the MR-type time-averaging closely matched experimental MR results, validating the DEM-CFD model. Analysis of different averaging procedures confirmed that MR time-averages of dynamic systems correspond to particle-weighted averaging, rather than frame-weighted averaging, and also demonstrated that the use of Gaussian slices in MR imaging of dynamic systems is valid. © 2013 American Chemical Society.
Resumo:
Due to concerns about environmental protection and resource utilization, product lifecycle management for end-of-life (EOL) has received increasing attention in many industrial sectors including manufacturing, maintenance/repair, and recycling/refurbishing of the product. To support these functions, crucial issues are studied to realize a product recovery management system (PRMS), including: (1) an architecture design for EOL services, such as remanufacturing and recycling; (2) a product data model required for EOL activity based on international standards; and (3) an infrastructure for information acquisition and mapping to product lifecycle information. The presented works are illustrated via a realistic scenario. © 2008 Elsevier B.V. All rights reserved.
Resumo:
Purpose: The purpose of this paper is to investigate how supply and demand interact during industrial emergence. Design/methodology/approach: The paper builds on previous theorising about co-evolutionary dynamics, exploring the interaction between supply and demand in a study of the industrial emergence of the commercial inkjet cluster in Cambridge, UK. Data are collected through 13 interviews with professionals working in the industry. Findings: The paper shows that as new industries emerge, asynchronies between technology supply and market demand create opportunities for entrepreneurial activity. In attempting to match innovative technologies to particular applications, entrepreneurs adapt to the system conditions and shape the environment to their own advantage. Firms that successfully operate in emerging industries demonstrate the functionality of new technologies, reducing uncertainty and increasing customer receptiveness. Research limitations/implications: The research is geographically bounded to the Cambridge commercial inkjet cluster. Further studies could consider commercial inkjet from a global perspective or test the applicability of the findings in other industries. Practical implications: Technology-based firms are often innovating during periods of industrial emergence. The insights developed in this paper help such firms recognise the emerging context in which they operate and the challenges that need to overcome. Originality/value: As an in depth study of a single industry, this research responds to calls for studies into industrial emergence, providing insights into how supply and demand interact during this phase of the industry lifecycle. © Emerald Group Publishing Limited.