35 resultados para in-channel dam
em Cambridge University Engineering Department Publications Database
Resumo:
This paper gives a short introduction to two research streams in embankment dam engineering underway at Imperial College London. The first is the modelling of embankment dam behaviour during earthquakes and the second is an investigation into the susceptibility of granular filters to internal erosion. The research motivation, methods and expected outcomes of each stream are discussed.
Resumo:
We demonstrate a room temperature processed ferroelectric (FE) nonvolatile memory based on a ZnO nanowire (NW) FET where the NW channel is coated with FE nanoparticles. A single device exhibits excellent memory characteristics with the large modulation in channel conductance between ON and OFF states exceeding 10(4), a long retention time of over 4 × 10(4) s, and multibit memory storage ability. Our findings provide a viable way to create new functional high-density nonvolatile memory devices compatible with simple processing techniques at low temperature for flexible devices made on plastic substrates.
Resumo:
Three-dimensional bumps have been developed and investigated, aiming at the two major objectives of shock-wave / boundary-layer interaction control, i.e. drag reduction and suppression of separation, simultaneously. An experimental investigation has been conducted for a default rounded bump in channel now at University of Cambridge and a computational study has been performed for a spanwise series of rounded bumps mounted on a transonic aerofoil at University of Stuttgart. Observed in both cases are wave drag reduction owing to A-shock structures produced by three-dimensional surface bumps and mild control effects on the boundary layer. The effects of rough surface and tall extension have been investigated as well as several geometric variations and multiple bump configurations. A double configuration of narrow rounded bumps has been found to best perform amongst the tested, considerably reducing wave drag through a well-established A-shock structure with little viscous penalty and thus achieving substantial overall drag reduction. Counter-rotating streamwise vortex pairs have been produced by some configurations as a result of local flow separation, but they have been observed to be confined in relatively narrow wake regions, expected to be beneficial in suppressing large-scale separation under off-design condition despite increase of viscous drag. On the whole a large potential of three-dimensional control with discrete rounded bumps has been demonstrated both experimentally and numerically, and experimental investigation of bumps fitted on a transonic aerofoil or wing is suggested toward practical application.
Resumo:
The permeability of asphalt concrete has been the subject of much study by pavement engineers over the last decade. The work undertaken has tended to focus on high air voids as the primary indicator of permeable asphalt concrete. This paper presents a simple approach for understanding the parameters that affect permeability. Principles explained by Taylor in 1956 in channel theory work for soils are used to derive a new parameter-representative pore size. Representative pore size is related to the air voids in the compacted mix and the D75 of the asphalt mix grading curve. Collected Superpave permeability data from published literature and data collected by the writers at the Queensland Department of Transport and Main Roads is shown to be better correlated with representative pore size than air voids, reducing the scatter considerably. Using the database of collected field and laboratory permeability values an equation is proposed that pavement engineers can use to estimate the permeability of in-place pavements. © 2011 ASCE.
Resumo:
We demonstrate modulations of electrical conductance and hysteresis behavior in ZnO nanowire transistors via electrically polarized switching of ferroelectric liquid crystal (FLC). After coating a nanowire channel in the transistors with FLCs, we observed large increases in channel conductance and hysteresis width, and a strong dependence of hysteresis loops on the polarization states associated with the orientation of electric dipole moments along the direction of the gate electric field. Furthermore, the reversible switching and retention characteristics provide the feasibility of creating a hybrid system with switch and memory functions. © 2013 American Institute of Physics.
Resumo:
Electrical detection of solid-state charge qubits requires ultrasensitive charge measurement, typically using a quantum point contact or single-electron-transistor, which imposes strict limits on operating temperature, voltage and current. A conventional FET offers relaxed operating conditions, but the back-action of the channel charge is a problem for such small quantum systems. Here, we discuss the use of a percolation transistor as a measurement device, with regard to charge sensing and backaction. The transistor is based on a 10nm thick SOI channel layer and is designed to measure the displacement of trapped charges in a nearby dielectric. At cryogenic temperatures, the trapped charges result in strong disorder in the channel layer, so that current is constrained to a percolation pathway in sub-threshold conditions. A microwave driven spatial Rabi oscillation of the trapped charge causes a change in the percolation pathway, which results in a measurable change in channel current. © The Electrochemical Society.