65 resultados para hybrid prediction method
em Cambridge University Engineering Department Publications Database
Resumo:
This work presents active control of high-frequency vibration using skyhook dampers. The choice of the damper gain and its optimal location is crucial for the effective implementation of active vibration control. In vibration control, certain sensor/actuator locations are preferable for reducing structural vibration while using minimum control effort. In order to perform optimisation on a general built-up structure to control vibration, it is necessary to have a good modelling technique to predict the performance of the controller. The present work exploits the hybrid modelling approach, which combines the finite element method (FEM) and statistical energy analysis (SEA) to provide efficient response predictions at medium to high frequencies. The hybrid method is implemented here for a general network of plates, coupled via springs, to allow study of a variety of generic control design problems. By combining the hybrid method with numerical optimisation using a genetic algorithm, optimal skyhook damper gains and locations are obtained. The optimal controller gain and location found from the hybrid method are compared with results from a deterministic modelling method. Good agreement between the results is observed, whereas results from the hybrid method are found in a significantly reduced amount of time. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Managing change can be challenging due to the high levels of interdependency in concurrent engineering processes. A key activity in engineering change management is propagation analysis, which can be supported using the change prediction method. In common with most other change prediction approaches, the change prediction method has three important limitations: L1: it depends on highly subjective input data; L2: it is capable of modelling 'generalised cases' only and cannot be; customised to assess specific changes; and L3: the input data are static, and thus, guidance does not reflect changes in the design. This article contributes to resolving these limitations by incorporating interface information into the change prediction method. The enhanced method is illustrated using an example based on a flight simulator. © The Author(s) 2013.
Resumo:
Engineering changes (ECs) are essential in complex product development, and their management is a crucial discipline for engineering industries. Numerous methods have been developed to support EC management (ECM), of which the change prediction method (CPM) is one of the most established. This article contributes a requirements-based benchmarking approach to assess and improve existing methods. The CPM is selected to be improved. First, based on a comprehensive literature survey and insights from industrial case studies, a set of 25 requirements for change management methods are developed. Second, these requirements are used as benchmarking criteria to assess the CPM in comparison to seven other promising methods. Third, the best-in-class solutions for each requirement are investigated to draw improvement suggestions for the CPM. Finally, an enhanced ECM method which implements these improvements is presented. © 2013 © 2013 The Author(s). Published by Taylor & Francis.
Resumo:
© 2014, Springer-Verlag London. Engineering changes are essential for any product development, and their management has become a crucial discipline. Research in engineering change management has brought about some methods and tools to support dealing with changes. This work extends the change prediction method through incorporation of a function–behaviour–structure (FBS) scheme. These additional levels of detail provide the rationales for change propagation and allow a more proactive management of changes. First, we develop the ontology of this method based on a comprehensive comparison of three seminal functional reasoning schemes. Then, we demonstrate the FBS Linkage technique by applying it to a diesel engine. Finally, we evaluate the method.
Resumo:
Emissions, fuel burn, and noise are the main drivers for innovative aircraft design. Embedded propulsion systems, such as for example used in hybrid-wing body aircraft, can offer fuel burn and noise reduction benefits but the impact of inlet flow distortion on the generation and propagation of turbomachinery noise has yet to be assessed. A novel approach is used to quantify the effects of non-uniform flow on the creation and propagation of multiple pure tone (MPT) noise. The ultimate goal is to conduct a parametric study of S-duct inlets to quantify the effects of inlet design parameters on the acoustic signature. The key challenge is that the effects of distortion transfer, noise source generation and propagation through the non-uniform flow field are inherently coupled such that a simultaneous computation of the aerodynamics and acoustics is required to capture the mechanisms at play. The technical approach is based on a body force description of the fan blade row that is able to capture the distortion transfer and the blade-to-blade flow variations that cause the MPT noise while reducing computational cost. A single, 3-D full-wheel CFD simulation, in which the Euler equations are solved to second-order spatial and temporal accuracy, simultaneously computes the MPT noise generation and its propagation in distorted inlet flow. A new method of producing the blade-to-blade variations in the body force field for MPT noise generation has been developed and validated. The numerical dissipation inherent to the solver is quantified and used to correct for non-physical attenuation in the far-field noise spectra. Source generation, acoustic propagation and acoustic energy transfer between modes is examined in detail. The new method is validated on NASA's Source Diagnostic Test fan and inlet, showing good agreement with experimental data for aerodynamic performance, acoustic source generation, and far-field noise spectra. The next steps involve the assessment of MPT noise in serpentine inlet ducts and the development of a reduced order formulation suitable for incorporation into NASA's ANOPP framework. © 2010 by Jeff Defoe, Alex Narkaj & Zoltan Spakovszky.