4 resultados para human influence
em Cambridge University Engineering Department Publications Database
Resumo:
Marginal utility theory prescribes the relationship between the objective property of the magnitude of rewards and their subjective value. Despite its pervasive influence, however, there is remarkably little direct empirical evidence for such a theory of value, let alone of its neurobiological basis. We show that human preferences in an intertemporal choice task are best described by a model that integrates marginally diminishing utility with temporal discounting. Using functional magnetic resonance imaging, we show that activity in the dorsal striatum encodes both the marginal utility of rewards, over and above that which can be described by their magnitude alone, and the discounting associated with increasing time. In addition, our data show that dorsal striatum may be involved in integrating subjective valuation systems inherent to time and magnitude, thereby providing an overall metric of value used to guide choice behavior. Furthermore, during choice, we show that anterior cingulate activity correlates with the degree of difficulty associated with dissonance between value and time. Our data support an integrative architecture for decision making, revealing the neural representation of distinct subcomponents of value that may contribute to impulsivity and decisiveness.
Resumo:
The vigor with which a participant performs actions that produce valuable outcomes is subject to a complex set of motivational influences. Many of these are believed to involve the amygdala and the nucleus accumbens, which act as an interface between limbic and motor systems. One prominent class of influences is called pavlovian-instrumental transfer (PIT), in which the motivational characteristics of a predictor influence the vigor of an action with respect to which it is formally completely independent. We provide a demonstration of behavioral PIT in humans, with an audiovisual predictor of the noncontingent delivery of money inducing participants to perform more avidly an action involving squeezing a handgrip to earn money. Furthermore, using functional magnetic resonance imaging, we show that this enhanced motivation was associated with a trial-by-trial correlation with the blood oxygenation level-dependent (BOLD) signal in the nucleus accumbens and a subject-by-subject correlation with the BOLD signal in the amygdala. Our data dovetails well with the animal literature and sheds light on the neural control of vigor.
Resumo:
Food preferences are acquired through experience and can exert strong influence on choice behavior. In order to choose which food to consume, it is necessary to maintain a predictive representation of the subjective value of the associated food stimulus. Here, we explore the neural mechanisms by which such predictive representations are learned through classical conditioning. Human subjects were scanned using fMRI while learning associations between arbitrary visual stimuli and subsequent delivery of one of five different food flavors. Using a temporal difference algorithm to model learning, we found predictive responses in the ventral midbrain and a part of ventral striatum (ventral putamen) that were related directly to subjects' actual behavioral preferences. These brain structures demonstrated divergent response profiles, with the ventral midbrain showing a linear response profile with preference, and the ventral striatum a bivalent response. These results provide insight into the neural mechanisms underlying human preference behavior.