11 resultados para historical records
em Cambridge University Engineering Department Publications Database
Resumo:
The manufacturing industry is currently facing unprecedented challenges from changes and disturbances. The sources of these changes and disturbances are of different scope and magnitude. They can be of a commercial nature, or linked to fast product development and design, or purely operational (e.g. rush order, machine breakdown, material shortage etc.). In order to meet these requirements it is increasingly important that a production operation be flexible and is able to adapt to new and more suitable ways of operating. This paper focuses on a new strategy for enabling manufacturing control systems to adapt to changing conditions both in terms of product variation and production system upgrades. The approach proposed is based on two key concepts: (1) An autonomous and distributed approach to manufacturing control based on multi-agent methods in which so called operational agents represent the key physical and logical elements in the production environment to be controlled - for example, products and machines and the control strategies that drive them and (2) An adaptation mechanism based around the evolutionary concept of replicator dynamics which updates the behaviour of newly formed operational agents based on historical performance records in order to be better suited to the production environment. An application of this approach for route selection of similar products in manufacturing flow shops is developed and is illustrated in this paper using an example based on the control of an automobile paint shop.
Learning the lessons of history? Electronic records in the United Kingdom acute hospitals, 1988-2002
Resumo:
The discipline of Artificial Intelligence (AI) was born in the summer of 1956 at Dartmouth College in Hanover, New Hampshire. Half of a century has passed, and AI has turned into an important field whose influence on our daily lives can hardly be overestimated. The original view of intelligence as a computer program - a set of algorithms to process symbols - has led to many useful applications now found in internet search engines, voice recognition software, cars, home appliances, and consumer electronics, but it has not yet contributed significantly to our understanding of natural forms of intelligence. Since the 1980s, AI has expanded into a broader study of the interaction between the body, brain, and environment, and how intelligence emerges from such interaction. This advent of embodiment has provided an entirely new way of thinking that goes well beyond artificial intelligence proper, to include the study of intelligent action in agents other than organisms or robots. For example, it supplies powerful metaphors for viewing corporations, groups of agents, and networked embedded devices as intelligent and adaptive systems acting in highly uncertain and unpredictable environments. In addition to giving us a novel outlook on information technology in general, this broader view of AI also offers unexpected perspectives into how to think about ourselves and the world around us. In this chapter, we briefly review the turbulent history of AI research, point to some of its current trends, and to challenges that the AI of the 21st century will have to face. © Springer-Verlag Berlin Heidelberg 2007.