3 resultados para high calcium adaptation
em Cambridge University Engineering Department Publications Database
Resumo:
Amyloid nanofibers derived from hen egg white lysozyme were processed into macroscopic fibers in a wet-spinning process based on interfacial polyion complexation using a polyanionic polysaccharide as cross-linker. As a result of their amyloid nanostructure, the hierarchically self-assembled protein fibers have a stiffness of up to 14 GPa and a tensile strength of up to 326 MPa. Fine-tuning of the polyelectrolytic interactions via pH allows to trigger the release of small molecules, as demonstrated with riboflavin-5'-phophate. The amyloid fibrils, highly oriented within the gellan gum matrix, were mineralized with calcium phosphate, mimicking the fibrolamellar structure of bone. The formed mineral crystals are highly oriented along the nanofibers, thus resulting in a 9-fold increase in fiber stiffness.
Resumo:
For many applications, it is necessary to produce speech transcriptions in a causal fashion. To produce high quality transcripts, speaker adaptation is often used. This requires online speaker clustering and incremental adaptation techniques to be developed. This paper presents an integrated approach to online speaker clustering and adaptation which allows efficient clustering of speakers using the same accumulated statistics that are normally used for adaptation. Using a consistent criterion for both clustering and adaptation should yield gains for both stages. The proposed approach is evaluated on a meetings transcription task using audio from multiple distant microphones. Consistent gains over standard clustering and adaptation were obtained. Copyright © 2011 ISCA.
Resumo:
Abstract A theoretical model is developed for the sound scattered when a sound wave is incident on a cambered aerofoil at non-zero angle of attack. The model is based on the linearization of the Euler equations about a steady subsonic flow, and is an adaptation of previous work which considered incident vortical disturbances. Only high-frequency sound waves are considered. The aerofoil thickness, camber and angle of attack are restricted such that the steady flow past the aerofoil is a small perturbation to a uniform flow. The singular perturbation analysis identifies asymptotic regions around the aerofoil; local 'inner' regions, which scale on the incident wavelength, at the leading and trailing edges of the aerofoil; Fresnel regions emanating from the leading and trailing edges of the aerofoil due to the coalescence of singularities and points of stationary phase; a wake transition region downstream of the aerofoil leading and trailing edge; and an outer region far from the aerofoil and wake. An acoustic boundary layer on the aerofoil surface and within the transition region accounts for the effects of curvature. The final result is a uniformly-valid solution for the far-field sound; the effects of angle of attack, camber and thickness are investigated. © 2013 Cambridge University Press.