51 resultados para greenhouse emissions
em Cambridge University Engineering Department Publications Database
Reducing Motor Vehicle Greenhouse Gas Emissions in a Non-California State: A Case Study of Minnesota
Resumo:
Biofuels are increasingly promoted worldwide as a means for reducing greenhouse gas (GHG) emissions from transport. However, current regulatory frameworks and most academic life cycle analyses adopt a deterministic approach in determining the GHG intensities of biofuels and thus ignore the inherent risk associated with biofuel production. This study aims to develop a transparent stochastic method for evaluating UK biofuels that determines both the magnitude and uncertainty of GHG intensity on the basis of current industry practices. Using wheat ethanol as a case study, we show that the GHG intensity could span a range of 40-110 gCO2e MJ-1 when land use change (LUC) emissions and various sources of uncertainty are taken into account, as compared with a regulatory default value of 44 gCO2e MJ-1. This suggests that the current deterministic regulatory framework underestimates wheat ethanol GHG intensity and thus may not be effective in evaluating transport fuels. Uncertainties in determining the GHG intensity of UK wheat ethanol include limitations of available data at a localized scale, and significant scientific uncertainty of parameters such as soil N2O and LUC emissions. Biofuel polices should be robust enough to incorporate the currently irreducible uncertainties and flexible enough to be readily revised when better science is available. © 2013 IOP Publishing Ltd.
Resumo:
Consumer goods manufacturers aiming to reduce the environmental impact associated with their products commonly pursue incremental change strategies, but more radical approaches may be required if we are to address the challenges of sustainable consumption. One strategy to realize step change reductions is to prepare a portfolio of innovations providing different levels of impact reduction in exchange for different levels of organizational resource commitment. In this research a tool is developed to support this strategy, starting with the assumption that through brainstorming or other eco-innovation approaches, a long-list of candidate innovations has been created. The tool assesses the potential greenhouse gas benefit of an innovative option against the difficulty of its implementation. A simple greenhouse gas benefit assessment method based on streamlined LCA was used to analyze impact reduction potential, and a novel measure of implementation difficulty was developed. The predictions of implementation difficulty were compared against expert opinion, and showed similar results indicating the measure can be used sensibly to predict implementation difficulty. The assessment of the environmental gain versus implementation difficulty is visualized in a matrix, showing the trade-offs of several options. The tool is deliberately simple with scalar measures of CO 2 emissions benefits and implementation difficulty so tool users must remain aware of other potential environmental burdens besides greenhouse gases (e.g. water, waste). In addition, although relative life cycle emissions benefits of an option may be low, the absolute impact of an option can be high and there may be other co-benefits, which could justify higher levels of implementation difficulty. Different types of consumer products (e.g. household, personal care, foods) have been evaluated using the tool. Initial trials of the tool within Unilever demonstrate that the tool facilitates rapid evaluation of low-carbon innovations. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
Life cycle assessment has been used to investigate the environmental and economic sustainability of a potential operation in the UK in which bioethanol is produced from the hydrolysis and subsequent fermentation of coppice willow. If the willow were grown on idle arable land in the UK, or, indeed, in Eastern Europe and imported as wood chips into the UK, it was found that savings of greenhouse gas emissions of 70-90%, when compared to fossil-derived gasoline on an energy basis, would be possible. The process would be energetically self-sufficient, as the co-products, e.g. lignin and unfermented sugars, could be used to produce the process heat and electricity, with surplus electricity being exported to the National Grid. Despite the environmental benefits, the economic viability is doubtful at present. However, the cost of production could be reduced significantly if the willow were altered by breeding to improve its suitability for hydrolysis and fermentation.
Resumo:
This work represents a contribution to the field of sustainable electricity system design by using an optimization tool to specify the final mix composition, subject to the constraints of: emissions that are within the biocapacity of the region; a diverse and robust electricity supply system; and supply that at least meets current demand. The 25-country European Union (EU-25) is used as a case study. All the goals, save diversity, can be met by re-structuring the current fuel mix, thus maintaining current consumption levels. The diversity target is only met when consumption is reduced by 10-15% and the constraint on maximum material throughput is relaxed. Re-structuring the mix and reducing consumption is insufficient to achieve a sustainable EU carbon footprint. However, the solution proposed singlehandedly allows the EU to meet its Kyoto emissions target as well as its 2007 policy of a reduction of 20% in greenhouse gas emissions by 2020. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
Anthropogenic climate and land-use change are leading to irreversible losses of global biodiversity, upon which ecosystem functioning depends. Since total species' well-being depends on ecosystem goods and services, man must determine how much net primary productivity (NPP) may be appropriated and carbon emitted so as to not adversely impact this and future generations. In 2005, man ought to have only appropriated 9.72 Pg C of NPP, representing a factor 2.50, or 59.93%, reduction in human-appropriated NPP in that year. Concurrently, the carbon cycle would have been balanced with a factor 1.26, or 20.84%, reduction from 7.60 Gt C/year to 5.70 Gt C/year, representing a return to the 1986 levels. This limit is in keeping with the category III stabilization scenario of the Intergovernmental Panel for Climate Change. Projecting population growth to 2030 and its associated basic food requirements, the maximum HANPP remains at 9.74 ± 0.02 Pg C/year. This time-invariant HANPP may only provide for the current global population of 6.51 billion equitably at the current average consumption of 1.49 t C per capita, calling into question the sustainability of developing countries striving for high-consuming country levels of 5.85 t C per capita and its impacts on equitable resource distribution. © Springer Science+Business Media B.V. 2009.