3 resultados para graphs and groups
em Cambridge University Engineering Department Publications Database
Resumo:
A fundamental problem in the analysis of structured relational data like graphs, networks, databases, and matrices is to extract a summary of the common structure underlying relations between individual entities. Relational data are typically encoded in the form of arrays; invariance to the ordering of rows and columns corresponds to exchangeable arrays. Results in probability theory due to Aldous, Hoover and Kallenberg show that exchangeable arrays can be represented in terms of a random measurable function which constitutes the natural model parameter in a Bayesian model. We obtain a flexible yet simple Bayesian nonparametric model by placing a Gaussian process prior on the parameter function. Efficient inference utilises elliptical slice sampling combined with a random sparse approximation to the Gaussian process. We demonstrate applications of the model to network data and clarify its relation to models in the literature, several of which emerge as special cases.
Resumo:
The low-density parity check codes whose performance is closest to the Shannon limit are `Gallager codes' based on irregular graphs. We compare alternative methods for constructing these graphs and present two results. First, we find a `super-Poisson' construction which gives a small improvement in empirical performance over a random construction. Second, whereas Gallager codes normally take N2 time to encode, we investigate constructions of regular and irregular Gallager codes that allow more rapid encoding and have smaller memory requirements in the encoder. We find that these `fast encoding' Gallager codes have equally good performance.